CHF120.00
Download steht sofort bereit
A state of the art presentation of important advances in the field of digital holography, detailing advances related to fundamentals of digital holography, in-line holography applied to fluid mechanics, digital color holography, digital holographic microscopy, infrared holography, special techniques in full field vibrometry and inverse problems in digital holography
Autorentext
Pascal PICART, Professor at Université du Maine, Le Mans, France
Inhalt
INTRODUCTION xi
Passcal PICART
CHAPTER 1. BASIC FUNDAMENTALS OF DIGITAL HOLOGRAPHY 1
Pascal PICART, Michel GROSS and Pierre MARQUET
1.1. Digital holograms 2
1.1.1. Interferences between the object and reference waves 2
1.1.2. Role of the image sensor 5
1.1.3. Demodulation of digital holograms 9
1.2. Back-propagation to the object plane 16
1.2.1. Monochromatic spherical and plane waves 17
1.2.2. Propagation equation 18
1.2.3. Angular spectrum transfer function 19
1.2.4. Kirchhoff and RayleighSommerfeld formulas 21
1.2.5. Fresnel approximation and Fresnel diffraction integral 22
1.3. Numerical reconstruction of digital holograms 24
1.3.1. Discrete Fresnel transform 24
1.3.2. Reconstruction with convolution 30
1.4. Holographic setups 37
1.4.1. Fresnel holography 37
1.4.2. Fresnel holography with spatial spectrum reduction 38
1.4.3. Fourier holography 38
1.4.4. Lensless Fourier holography 39
1.4.5. Image-plane holography 40
1.4.6. Holographic microscopy 41
1.4.7. In-line Gabor holography 43
1.5. Digital holographic interferometry 45
1.5.1. Reconstruction of the phase of the object 45
1.5.2. Optical phase variations and the sensitivity vector 46
1.5.3. Phase difference method 47
1.5.4. Phase unwrapping 49
1.6. Quantitative phase tomography 49
1.7. Conclusion 53
1.8. Bibliography 54
CHAPTER 2. DIGITAL IN-LINE HOLOGRAPHY APPLIED TO FLUID FLOWS 67
Sébastien COËTMELLEC, Denis LEBRUN and Marc BRUNEL
2.1. Examples of measurements in flows 68
2.1.1. Increasing NA with a divergent wave 68
2.1.2. Choice of the magnification 70
2.1.3. 3D velocity measurements in a turbulent boundary layer 70
2.1.4. Cavitation bubbles measurements 77
2.2. The fractional-order Fourier transform 81
2.3. Digital in-line holography with a sub-picosecond laser beam 82
2.4. Spatially partially coherent source applied to the digital in-line holography 89
2.5. Digital in-line holography for phase objects metrology 94
2.5.1. In-line holograms of transparent phase objects 94
2.5.2. Reconstruction 97
2.5.3. Experimental results 98
2.6. Bibliography 101
CHAPTER 3. DIGITAL COLOR HOLOGRAPHY FOR ANALYZING UNSTEADY WAKE FLOWS 107
JEAN MICHEL DESSE AND PASCAL PICART
3.1. Advantage of using multiple wavelengths 109
3.2. Analysis of subsonic wake flows 112
3.2.1. Description of the digital color holographic interferometer 112
3.2.2. Results obtained with subsonic wake flows 114
3.2.3. Comparison between holographic plate and digital holograms 116
3.3. Analysis of a supersonic jet with high-density gradients 117
3.3.1. Definition of an optical setup 118
3.3.2. Results obtained with a supersonic jet 122
3.4. Analysis of a hydrogen jet in a hypersonic flow 125
3.4.1. Experimental setup 126
3.4.2. Experimental results 128
3.4.3. Comparisons with numerical simulations 130
3.5. Conclusion 132
3.6. Acknowledgment 133
3.7. Bibliography 134
CHAPTER 4. AUTOMATION OF DIGITAL HOLOGRAPHIC DETECTION PROCEDURES FOR LIFE SCIENCES APPLICATIONS 137
Ahmed EL MALLAHI, Christophe MINETTI and Frank DUBOIS
4.1. Introduction 137
4.2. Experimental protocol 139
4.2.1. Optical setup 139
4.2.2. Dynamic monitoring 140
4.3. General tools 140
4.3.1. Extraction of the full interferometric information 140
4.3.2. Compensation of the phase 141
4.3.3. Border processing 143
4.3.4. Best focus determination 144
4.4. Automated 3D detection 145
4.4.1. Introduction 145 4.4.2. Description of the testing sa...