Tiefpreis
CHF66.60
Nachdruck geplant - Termin unbekannt.
This pacy introduction to circuits assumes no knowledge of electronics. Students gain understanding by exposure to good design examples.
Informationen zum Autor Tom Hayes reached electronics via a circuitous route that started in law school and eventually found him teaching Laboratory Electronics at Harvard, which he has done for twenty-five years. He has also taught electronics for the Harvard Summer School, the Harvard Extension School, and for seventeen years in Boston University's Department of Physics. He shares authorship of one patent, for a device that logs exposure to therapeutic bright light. He and his colleagues are trying to launch this device with a startup company named Goodlux Technologies. Tom designs circuits as the need for them arises in the electronics course. One such design is a versatile display, serial interface and programmer for use with the microcomputer that students build in the course. Klappentext This introduction to circuit design is unusual in several respects. First, it offers not just explanations, but a full course. Each of the twenty-five sessions begins with a discussion of a particular sort of circuit followed by the chance to try it out and see how it actually behaves. Accordingly, students understand the circuit's operation in a way that is deeper and much more satisfying than the manipulation of formulas. Second, it describes circuits that more traditional engineering introductions would postpone: on the third day, we build a radio receiver; on the fifth day, we build an operational amplifier from an array of transistors. The digital half of the course centers on applying microcontrollers, but gives exposure to Verilog, a powerful Hardware Description Language. Third, it proceeds at a rapid pace but requires no prior knowledge of electronics. Students gain intuitive understanding through immersion in good circuit design. Zusammenfassung Turn to this book if you want to learn about different types of circuits and their behavior. You will gain a deep and intuitive understanding of circuit operation! be exposed to advanced circuit designs! and learn to build analog and digital devices from first principles using basic components. Inhaltsverzeichnis 1. DC circuits; 2. RC circuits; 3. Diode circuits; 4. Transistors I; 5. Transistors II; 6. Operational amplifiers I; 7. Operational amplifiers II: nice positive feedback; 8. Operational amplifiers III; 9. Operational amplifiers IV: nasty positive feedback; 10. Operational amplifiers V: PID motor control loop; 11. Voltage regulators; 12. MOSFET switches; 13. Group audio project; 14. Logic gates; 15. Logic compilers, sequential circuits, flip-flops; 16. Counters; 17. Memory: state machines; 18. Analog to digital: phase-locked loop; 19. Microcontrollers and microprocessors I: processor/controller; 20. I/O, first assembly language; 21. Bit operations; 22. Interrupt: ADC and DAC; 23. Moving pointers, serial buses; 24. Dallas Standalone Micro, SiLabs SPI RAM; 25. Toys in the attic; Appendices; Index....
Klappentext
This introduction to circuit design is unusual in several respects. First, it offers not just explanations, but a full course. Each of the twenty-five sessions begins with a discussion of a particular sort of circuit followed by the chance to try it out and see how it actually behaves. Accordingly, students understand the circuit's operation in a way that is deeper and much more satisfying than the manipulation of formulas. Second, it describes circuits that more traditional engineering introductions would postpone: on the third day, we build a radio receiver; on the fifth day, we build an operational amplifier from an array of transistors. The digital half of the course centers on applying microcontrollers, but gives exposure to Verilog, a powerful Hardware Description Language. Third, it proceeds at a rapid pace but requires no prior knowledge of electronics. Students gain intuitive understanding through immersion in good circuit design.
Zusammenfassung
Turn to this book if you want to learn about different types of circuits and their behavior. You will gain a deep and intuitive understanding of circuit operation, be exposed to advanced circuit designs, and learn to build analog and digital devices from first principles using basic components.
Inhalt