Willkommen, schön sind Sie da!
Logo Ex Libris

A Game Theory Analysis of Options

  • Kartonierter Einband
  • 192 Seiten
(0) Erste Bewertung abgeben
Alle Bewertungen ansehen
Modern option pricing theory was developed in the late sixties and early seventies by F. Black, R. e. Merton and M. Scholes as an ... Weiterlesen
CHF 197.00
Print on demand - Exemplar wird für Sie besorgt.
Bestellung & Lieferung in eine Filiale möglich


Modern option pricing theory was developed in the late sixties and early seventies by F. Black, R. e. Merton and M. Scholes as an analytical tool for pricing and hedging option contracts and over-the-counter warrants. How ever, already in the seminal paper by Black and Scholes, the applicability of the model was regarded as much broader. In the second part of their paper, the authors demonstrated that a levered firm's equity can be regarded as an option on the value of the firm, and thus can be priced by option valuation techniques. A year later, Merton showed how the default risk structure of cor porate bonds can be determined by option pricing techniques. Option pricing models are now used to price virtually the full range of financial instruments and financial guarantees such as deposit insurance and collateral, and to quantify the associated risks. Over the years, option pricing has evolved from a set of specific models to a general analytical framework for analyzing the production process of financial contracts and their function in the financial intermediation process in a continuous time framework. However, very few attempts have been made in the literature to integrate game theory aspects, i. e. strategic financial decisions of the agents, into the continuous time framework. This is the unique contribution of the thesis of Dr. Alexandre Ziegler. Benefiting from the analytical tractability of contin uous time models and the closed form valuation models for derivatives, Dr.


This book shows how to combine game theory and option pricing in order to analyze dynamic multiperson decision problems in continuous time and under uncertainty. The basic intuition of the method is to separate the problem of the valuation of payoffs from the analysis of strategic interactions. Whereas the former is to be handled using option pricing, the latter can be addressed by game theory. The text shows how both instruments can be combined and how game theory can be applied to complex problems of corporate finance and financial intermediation. Besides providing theoretical foundations and serving as a guide to stochastic game theory modelling in continuous time, the text contains numerous applications to the theory of corporate finance and financial intermediation, such as the design of debt contracts, capital structure choice, the structure of banking deposit contracts, and the incentive effects of deposit insurance. By combining arbitrage-free valuation techniques with strategic analysis, the game theory analysis of options actually provides the link between markets and organizations.

1 Methodological Issues.- 1.1 Introduction.- 1.2 Game Theory Basics: Backward Induction and Subgame Perfection.- 1.3 Option Pricing Basics: The General Contingent Claim Equation.- 1.4 The Method of Game Theory Analysis of Options.- 1.5 When is the Method Appropriate?.- 1.5.1 The Link Between Option Value and Expected Utility.- 1.5.2 When Will the Option's Value be Correct?.- 1.6 What Kind of Problems is the Method Particularly Suited for?.- 1.7 An Example: Determining the Price of a Perpetual Put Option.- 1.7.1 Step 1: Structure of the Game.- 1.7.2 Step 2: Valuing the Option for a Given ExerciseStrategy.- 1.7.3 Step 3: Solving the Game.- 1.7.4 The Solution.- 1.8 Outline of the Book.- 2 Credit and Collateral.- 2.1 Introduction.- 2.2 The Risk-Shifting Problem.- 2.2.1 The Model.- 2.2.2 Profit-Sharing Contracts Between Lender and Borrower.- 2.2.3 Developing an Incentive Contract.- 2.2.4 Renegotiation-Proof Incentive Contracts.- 2.2.5 The Feasible Renegotiation-Proof Incentive Contract.- 2.2.6 The Financing Decision.- 2.2.7 The Effect of Payouts.- 2.3 The Observability Problem.- 2.3.1 Costly State Verification.- 2.3.2 Collateral.- 2.4 Conclusion.- 3 Endogenous Bankruptcy and Capital Structure.- 3.1 Introduction.- 3.2 The Model.- 3.3 The Value of the Firm and its Securities.- 3.3.1 The Value of Debt.- 3.3.2 The Value of the Firm.- 3.3.3 The Value of Equity.- 3.4 The Effect of Capital Structure on the Firm's Bankruptcy Decision.- 3.4.1 The Equity Holders' Optimal Bankruptcy Choice.- 3.4.2 The Principal-Agent Problem of EndogenousBankruptcy.- 3.4.3 Measuring the Agency Cost of Debt Arising fromEndogenous Bankruptcy.- 3.5 The Investment Decision.- 3.5.1 Underinvestment.- 3.5.2 Risk-Shifting.- 3.5.3 Measuring the Agency Cost of Debt Arising from Risk-Shifting.- 3.5.4 The Incentive Effects of Loan Covenants.- 3.6 The Financing Decision.- 3.6.1 Optimal Capital Structure.- 3.6.2 Interest Payments vs. Increase in the Face Value of Debt.- 3.6.3 Equilibrium on the Credit Market.- 3.6.4 Capital Structure and the Expected Life of Companies.- 3.7 An Incentive Contract.- 3.7.1 Impact of the Effective Interest Rate.- 3.7.2 Impact of the Rate of Growth in Debt.- 3.8 The Impact of Payouts.- 3.8.1 The Value of the Firm and its Securities.- 3.8.2 The Bankruptcy Decision.- 3.8.3 The Effect of the Payout Rate on Equity Value.- 3.8.4 Effect of a Loan Covenant on the Optimal Payout Rate.- 3.9 Conclusion.- 4 Junior Debt.- 4.1 Introduction.- 4.2 The Model.- 4.3 The Value of the Firm and its Securities.- 4.3.1 The Value of Senior Debt.- 4.3.2 The Value of Junior Debt.- 4.3.3 The Value of the Firm.- 4.3.4 The Value of Equity.- 4.4 The Equity Holders' Optimal Bankruptcy Choice.- 4.5 The Firm's Decision to Issue Junior Debt.- 4.6 The Influence of Junior Debt on the Value of Senior Debt.- 4.6.1 On the Impossibility of Perfect Immunization.- 4.6.2 On the Impossibility of Immunization Against Negative Wealth Effects.- 4.7 Conclusion.- 5 Bank Runs.- 5.1 Introduction.- 5.2 The Model.- 5.3 The Depositors' Run Decision.- 5.4 Valuing the Bank's Equity.- 5.5 The Shareholders' Recapitalization Decision.- 5.6 The Bank's Investment Incentives when Bank Runs are Possible.- 5.7 The Bank's Funding Decision.- 5.7.1 On the Feasibility of Viable Financial Intermediation.- 5.7.2 Optimal Bank Capital when Asset Risk is Positive.- 5.7.3 Optimal Bank Capital with Zero Asset Risk.- 5.8 Determining the Equilibrium Deposit Spread.- 5.9 Conclusion.- 6 Deposit Insurance.- 6.1 Introduction.- 6.2 The Model.- 6.3 Valuing Deposit Insurance, Bank Equity and Social Welfare.- 6.3.1 The Cost of the Deposit Insurance Guarantee.- 6.3.2 The Value of Bank Equity.- 6.3.3 The Value of Social Welfare.- 6.4 The Guarantor's Liquidation Strategy and Social Welfare.- 6.4.1 Minimizing the Cost of the Guarantee.- 6.4.2 Maximizing Social Welfare.- 6.4.3 Can Deposit Insurance Enhance Social Welfare?.- 6.5 The Incentive Effects of Deposit Insurance.- 6.5.1 The Investment Decision.- 6.5.2 The Financing Decision.- 6.6 The Impact of Deposit Insurance on the Equilibrium Deposit Spread.- 6.7 Deposit Insurance with Liquidation Delays.- 6.8 Deposit Insurance with Unobservable Asset Value.- 6.8.1 A First Approach: Extending the Model of Chapter 3.- 6.8.2 Merton's Solution.- 6.9 Conclusion.- 7 Summary and Conclusion.- References.- List of Figures.- List of Symbols.


Titel: A Game Theory Analysis of Options
Untertitel: Corporate Finance and Financial Intermediation in Continuous Time
EAN: 9783642058462
ISBN: 3642058469
Format: Kartonierter Einband
Herausgeber: Springer Berlin Heidelberg
Genre: Volkswirtschaft
Anzahl Seiten: 192
Gewicht: 300g
Größe: H235mm x B155mm x T10mm
Jahr: 2010
Auflage: Softcover reprint of hardcover 2nd ed. 2004

Weitere Produkte aus der Reihe "Springer Finance"