Willkommen, schön sind Sie da!
Logo Ex Libris

Large-Scale Parallel Data Mining

  • E-Book (pdf)
  • 260 Seiten
(0) Erste Bewertung abgeben
Alle Bewertungen ansehen
With the unprecedented growth-rate at which data is being collected and stored electronically today in almost all fields of human... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hiererhalten Sie Ihren Download-Link.
CHF 65.90
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich


With the unprecedented growth-rate at which data is being collected and stored electronically today in almost all fields of human endeavor, the efficient extraction of useful information from the data available is becoming an increasing scientific challenge and a massive economic need. This book presents thoroughly reviewed and revised full versions of papers presented at a workshop on the topic held during KDD'99 in San Diego, California, USA in August 1999 complemented by several invited chapters and a detailed introductory survey in order to provide complete coverage of the relevant issues. The contributions presented cover all major tasks in data mining including parallel and distributed mining frameworks, associations, sequences, clustering, and classification. All in all, the volume presents the state of the art in the young and dynamic field of parallel and distributed data mining methods. It will be a valuable source of reference for researchers and professionals.


Large-Scale Parallel Data Mining.- Parallel and Distributed Data Mining: An Introduction.- Mining Frameworks.- The Integrated Delivery of Large-Scale Data Mining: The ACSys Data Mining Project.- A High Performance Implementation of the Data Space Transfer Protocol (DSTP).- Active Mining in a Distributed Setting.- Associations and Sequences.- Efficient Parallel Algorithms for Mining Associations.- Parallel Branch-and-Bound Graph Search for Correlated Association Rules.- Parallel Generalized Association Rule Mining on Large Scale PC Cluster.- Parallel Sequence Mining on Shared-Memory Machines.- Classification.- Parallel Predictor Generation.- Efficient Parallel Classification Using Dimensional Aggregates.- Learning Rules from Distributed Data.- Clustering.- Collective, Hierarchical Clustering from Distributed, Heterogeneous Data.- A Data-Clustering Algorithm on Distributed Memory Multiprocessors.


Titel: Large-Scale Parallel Data Mining
EAN: 9783540465027
Format: E-Book (pdf)
Hersteller: Springer Berlin Heidelberg
Genre: IT & Internet
Veröffentlichung: 31.07.2003
Digitaler Kopierschutz: Wasserzeichen
Dateigrösse: 4.01 MB
Anzahl Seiten: 260

Weitere Bände aus der Buchreihe "Lecture Notes in Computer Science"