Willkommen, schön sind Sie da!
Logo Ex Libris

Making Sense of Data I

  • E-Book (pdf)
  • 248 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
With a focus on the needs of educators and students, Making Sense of Data presents the steps and issues that need to be considered... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hier erhalten Sie Ihren Download-Link.
CHF 60.00
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

With a focus on the needs of educators and students, Making Sense of Data presents the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project.  This Second Edition focuses on basic data analysis approaches that are necessary to complete a diverse range of projects.  New examples have been added to illustrate the different approaches, and there is considerably more emphasis on hands-on software tutorials to provide real-world exercises.  Via the related Web site, the book is accompanied by Traceis software, data sets, and tutorials; PowerPoint slides for classroom use; and other supplementary material to support educational classes.  The authors provide clear explanations that guide readers to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions.  The topical coverage has been revised throughout to ensure only basic data analysis approaches are discussed, and new appendices have been added on the Traceis software as well as new tutorials using a variety of data sets with the software.  Additional examples of data preparation, tables of graphs, statistics, grouping, and prediction have been included, and the topics of multiple linear regression and logistic regression have been added to provide a range of widely used and transparent approaches to performing classification and regression.

Autorentext
Glenn J. Myatt, PhD, is Chief Scientific Officer and Cofounder of Leadscope, Inc. The author of numerous journal articles, Dr. Myatt, is also the coauthor of Making Sense of Data II: A Practical Guide to Data Visualization, Advanced Data Mining Methods, and Applications and Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations, both of which are published by Wiley.

Wayne P. Johnson, MSc, is Cofounder of Leadscope, Inc., as well as a partner of Myatt & Johnson, Inc. He has over 35 years of experience in software engineering related to operating systems, telecommunications, and artificial intelligence at various companies including IBM, AT&T Bell Laboratories, and Ford Motor Company. He has led research projects related to informatics, and in addition to authoring numerous journal articles, Mr. Johnson is the coauthor of Making Sense of Data II: A Practical Guide to Data Visualization, Advanced Data Mining Methods, and Applications and Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations, both of which are published by Wiley.

Klappentext

Praise for the First Edition "...a well-written book on data analysis anddata mining that provides an excellent foundation..." --CHOICE "This is a must-read book for learning practicalstatistics and data analysis..." --Computing Reviews.com A proven go-to guide for data analysis, Making Sense of DataI: A Practical Guide to Exploratory Data Analysis and Data Mining,Second Edition focuses on basic data analysis approaches thatare necessary to make timely and accurate decisions in a diverserange of projects. Based on the authors' practical experiencein implementing data analysis and data mining, the new editionprovides clear explanations that guide readers from almost everyfield of study.In order to facilitate the needed steps when handling a dataanalysis or data mining project, a step-by-step approach aidsprofessionals in carefully analyzing data and implementing results,leading to the development of smarter business decisions. The toolsto summarize and interpret data in order to master data analysisare integrated throughout, and the Second Edition alsofeatures: * Updated exercises for both manual and computer-aidedimplementation with accompanying worked examples * New appendices with coverage on the freely availableTraceis(TM) software, including tutorials using data from avariety of disciplines such as the social sciences, engineering,and finance * New topical coverage on multiple linear regression and logisticregression to provide a range of widely used and transparentapproaches * Additional real-world examples of data preparation to establisha practical background for making decisions from data Making Sense of Data I: A Practical Guide to Exploratory DataAnalysis and Data Mining, Second Edition is an excellentreference for researchers and professionals who need to achieveeffective decision making from data. The Second Edition isalso an ideal textbook for undergraduate and graduate-level coursesin data analysis and data mining and is appropriate forcross-disciplinary courses found within computer science andengineering departments.



Zusammenfassung

Praise for the First Edition

...a well-written book on data analysis and data mining that provides an excellent foundation...

CHOICE

This is a must-read book for learning practical statistics and data analysis...

Computing Reviews.com



A proven go-to guide for data analysis, Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition focuses on basic data analysis approaches that are necessary to make timely and accurate decisions in a diverse range of projects. Based on the authors' practical experience in implementing data analysis and data mining, the new edition provides clear explanations that guide readers from almost every field of study.

In order to facilitate the needed steps when handling a data analysis or data mining project, a step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. The tools to summarize and interpret data in order to master data analysis are integrated throughout, and the Second Edition also features:

  • Updated exercises for both manual and computer-aided implementation with accompanying worked examples
  • New appendices with coverage on the freely available Traceis™ software, including tutorials using data from a variety of disciplines such as the social sciences, engineering, and finance
  • New topical coverage on multiple linear regression and logistic regression to provide a range of widely used and transparent approaches
  • Additional real-world examples of data preparation to establish a practical background for making decisions from data

Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition is an excellent reference for researchers and professionals who need to achieve effective decision making from data. The Second Edition is also an ideal textbook for undergraduate and graduate-level courses in data analysis and data mining and is appropriate for cross-disciplinary courses found within computer science and engineering departments.

Inhalt

PREFACE ix

1 INTRODUCTION 1

1.1 Overview 1

1.2 Sources of Data 2

1.3 Process for Making Sense of Data 3

1.4 Overview of Book 13

1.5 Summary 16

Further Reading 16

2 DESCRIBING DATA 17

2.1 Overview 17

2.2 Observations and Variables 18

2.3 Types of Variables 20

2.4 Central Tendency 22

2.5 Distribution of the Data 24

2.6 Confidence Intervals 36

2.7 Hypothesis Tests 40

Exercises 42

Further Reading 45

3 PREPARING DATA TABLES 47

3.1 Overview 47

3.2 Cleaning the Data 48

3.3 Removing Observations and Variables 49

3.4 Generating Consistent Scales Across Variables 49

3.5 New Frequency Distribution 51

3.6 Converting Text to Numbers 52

3.7 Converting Continuous Data to Categories 53

3.8 Combining Variables 54

3.9 Generating Groups 54

3.10 Preparing Unstructured Data 55

Exercises 57

Further Reading 57

4 UNDERSTANDING RELATIONSHIPS 59

4.1 Overview 59

4.2 Visualizing Relationships Between Variables 60

4.3 Calculating Metrics About Relationships 69

Exercises 81

Further Reading 82

5 IDENTIFYING AND UNDERSTANDING GROUPS 83

5.1 Overview 83

5.2 Clustering 88

5.3 Association Rules 111

5.4 Learning Decision Trees from Data 122

Exercises 137

Further Reading 140

6 BUILDING MODELS FROM DATA 141

6.1 Overview 141

6.2 Linear Regression 149

6.3 Logistic Regression 161

6.4 k-Nearest Neighbors 167

6.5 Classification and Regression Trees 172

6.6 Other Approaches 178

Exercises 179

Further Reading 182

APPENDIX A ANSWERS TO EXERCISES 185

APPENDIX B HANDS-ON TUTORIALS 191

B.1 Tutorial Overview 191

B.2 Access and Installation 191

B.3 Software Overview 192

B.4 Reading in Data 193

B.5 Preparation Tools 195

B.6 Tables and Graph Tools 199

B.7 Statistics Tools 202

B.8 Grouping Tools 204

B.9 Models Tools 207

B.10 Apply Model 211

B.11 Exercises 211

BIBLIOGRAPHY 227

INDEX 231

Produktinformationen

Titel: Making Sense of Data I
Untertitel: A Practical Guide to Exploratory Data Analysis and Data Mining
Autor:
EAN: 9781118422014
ISBN: 978-1-118-42201-4
Digitaler Kopierschutz: Adobe-DRM
Format: E-Book (pdf)
Herausgeber: Wiley
Genre: Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik
Anzahl Seiten: 248
Veröffentlichung: 02.07.2014
Jahr: 2014
Auflage: 2. Aufl.
Untertitel: Englisch
Dateigrösse: 13.5 MB