

Beschreibung
Aus der Buchreihe »Informatik verstehen«. Ideal zum Selbststudium So funktioniert Machine Learning die ganze Mathematik verständlich gemachtMaschinelles Lernen alle Grundlagen!. Dieser Grundkurs führt Sie in alle gängigen ML-Methoden ein. Paul Wilmott, bekannt...Aus der Buchreihe »Informatik verstehen«. Ideal zum Selbststudium
So funktioniert Machine Learning die ganze Mathematik verständlich gemachtMaschinelles Lernen alle Grundlagen!. Dieser Grundkurs führt Sie in alle gängigen ML-Methoden ein. Paul Wilmott, bekannt für seine erhellende und unterhaltsame Darstellung angewandter Mathematik, stellt Ihnen die einschlägigen mathematischen Verfahren vor von linearer Regression bis Neuronale Netze, komplett unabhängig von Software und Code. Der Vorteil dabei: Jeder Schritt ist schwarz auf weiß für Sie nachvollziehbar, kein Framework schaltet sich dazwischen, es geht immer um die Sache selbst. Mit vielen Beispielen, Grafiken und Schritt-für-Schritt-Anleitungen. Für alle, die wirklich verstehen wollen, wie Maschinen lernen.Die mathematischen Grundlagen für maschinelles LernenAlle wichtigen Algorithmen Schritt für Schritt erklärtInkl. Reinforcement Learning, k-Nearest Neighbors, Neuronale Netze u. v. m.Die Übersetzung des Kultbuchs "Machine Learning: An Applied Mathematics Introduction" von Paul Wilmott Aus dem Inhalt:Lineare Regressionk-Nearest NeighborsNaive Bayes-Klassifikatorenk-Means-AlgorithmusSupport Vector MachinesLogistische RegressionSelbstorganisierende KartenEntscheidungsbäumeReinforcement LearningNeuronale Netze
Autorentext
Paul Wilmott vermittelt angewandte Mathematik mit Kultstatus. Seine unverwechselbaren Einführungen bringen seit Jahrzehnten Licht in finanzmathematische Modelle, Derivatehandel, Risikobewertung und Co. Wilmott forscht, lehrt und schreibt nicht nur, er war auch schon als Profi-Jongleur und Under-Cover-Ermittler (Channel 4) im Einsatz, arbeitet für das CQF-Institut (Quantitative Finance) und für die Bildungsinitiative "Math on Toast" (Mathematik für Familien).
Klappentext
Maschinelles Lernen - alle Grundlagen! Paul Wilmott ist für seine erhellende und unterhaltsame Darstellung angewandter Mathematik bekannt. Von der linearen Regression bis zu Neuronalen Netzwerken führt er Sie durch alle Verfahren, und zwar komplett Software-unabhängig. Der Vorteil dabei: Jeder Schritt ist schwarz auf weiß zu sehen, kein Framework kann etwas "verstecken", es geht immer um die Sache selbst. Mit vielen Beispielen, Grafiken und Schritt-für-Schritt-Kästen. Für alle, die wirklich verstehen wollen, wie Maschinen lernen.
Aus dem Inhalt:
Neuronale Netze
Inhalt
Vorwort ... 13
1.1 ... Maschinelles Lernen ... 18
1.2 ... Lernen ist der Schlüssel ... 19
1.3 ... Ein wenig Geschichte ... 20
1.4 ... Schlüsselmethodiken in diesem Buch ... 22
1.5 ... Klassische mathematische Modellierung ... 26
1.6 ... Maschinelles Lernen ist anders ... 28
1.7 ... Einfachheit führt zu Komplexität ... 29
1.8 ... Weiterführende Literatur ... 33
2.1 ... Jargon und Notation ... 35
2.2 ... Skalierung ... 37
2.3 ... Distanzmessung ... 38
2.4 ... Fluch der Dimensionalität ... 39
2.5 ... Hauptkomponentenanalyse ... 39
2.6 ... Maximum-Likelihood-Schätzung ... 40
2.7 ... Konfusionsmatrix ... 44
2.8 ... Kostenfunktion ... 47
2.9 ... Gradientenabstieg ... 52
2.10 ... Training, Testen und Validieren ... 54
2.11 ... Bias und Varianz ... 57
2.12 ... Lagrange-Multiplikatoren ... 63
2.13 ... Mehrfachklassen ... 65
2.14 ... Informationstheorie und Entropie ... 67
2.15 ... Verarbeitung natürlicher Sprache (NLP) ... 70
2.16 ... Bayes-Theorem ... 72
2.17 ... Was nun? ... 73
2.18 ... Weiterführende Literatur ... 74
3.1 ... Wofür können wir die Methode verwenden? ... 75
3.2 ... Wie die Methode funktioniert ... 76
3.3 ... Der Algorithmus ... 78
3.4 ... Probleme mit KNN ... 78
3.5 ... Beispiel: Körpergröße und -gewicht ... 79
3.6 ... Regression ... 83
3.7 ... Weiterführende Literatur ... 85
4.1 ... Wofür können wir die Methode verwenden? ... 87
4.2 ... Was macht K-Means Clustering? ... 89
4.3 ... Scree-Plots ... 93
4.4 ... Beispiel: Kriminalität in England, 13 Dimensionen ... 94
4.5 ... Beispiel: Volatiliät ... 98
4.6 ... Beispiel: Zinssatz und Inflation ... 100
4.7 ... Beispiel: Zinssätze, Inflation und BIP-Wachstum ... 103
4.8 ... Ein paar Kommentare ... 104
4.9 ... Weiterführende Literatur ... 105
5.1 ... Wofür können wir ihn verwenden? ... 107
5.2 ... Verwendung des Bayes-Theorems ... 108
5.3 ... Anwendung des NBK ... 108
5.4 ... In Symbolen ... 110
5.5 ... Beispiel: Politische Reden ... 111
5.6 ... Weiterführende Literatur ... 114
6.1 ... Wofür können wir sie verwenden? ... 115
6.2 ... Mehrdimensionale lineare Regression ... 116
6.3 ... Logistische Regression ... 117
6.4 ... Beispiel: Noch einmal politische Reden ... 119
6.5 ... Weitere Regressionsmethoden ... 121
6.6 ... Weiterführende Literatur ... 122
7.1 ... Wofür können wir sie verwenden? ... 123
7.2 ... Harte Ränder ... 123
7.3 ... Beispiel: Iris (Schwertlilie) ... 126
7.4 ... Lagrange-Multiplier-Version ... 128
7.5 ... Weiche Ränder ... 130
7.6 ... Kernel-Trick ... 132
7.7 ... Weiterführende Literatur ... 136
8.1 ... Wofür können wir sie verwenden? ... 137
8.2 ... Die Methode ... 138
8.3 ... Der Lernalgorithmus ... 140
8.4 ... Beispiel: Gruppierung von Aktien ... 142
8.5 ... Beispiel: Abstimmungen im Unterhaus ... 147
8.6 ... Weiterführende Literatur ... 149
9.1 ... Wofür können wir sie verwenden? ... 151
9.2 ... Beispiel: Zeitschriftenabo ... 153
9.3 ... Entropie ... 158
9.4 ... Überanpassung und Abbruchregeln ... 161
9.5 ... Zuschneiden ... 162
9.6 ... Numerische Merkmale/Attribute ... 162
9.7 ... Regression ... 164
9.8 ... Ausblick ... 171
9.9 ... Bagging und Random Forest ... 171
9.10 ... Weiterführende Literatur ... 172
10.1 ... Wofür können wir sie verwenden? ... 173
10.2 ... Ein sehr einfaches Netzwerk ... 173
10.3 ... Universelles Approximations-Theorem ... 174
10.4 ... Ein noch einfacheres Netzwerk ... 176
10.5 ... Die mathematische Manipulation im Detail ... 177
10.6 ... Häufige Aktivierungsfunktionen ... 181
10.7 ... Das Ziel ... 182
10.8 ... Beispiel: Approximation einer Funktion ... 183
10.9 ... Kostenfunktion ... 184
10.10 ... Backpropagation ... 185
10.11 ... Beispiel: Buchstabenerkennung ... 188
10.12 ... Training und Testen ... 190
10.13 ... Mehr Architekturen ... 194
10.14 ... Deep Learning ... 196
10.15 ... Weiterführende Literatur ... 197
11.1 ... Wofür können wir es verwenden? ... 199
11.2 ... Geländeausfahrt mit Ihrem Lamborghini 400 GT ... 200
11.3 ... Jargon ... 202
11.4 ... Ein erster Blick auf Blackjack ... 203 …
