

Beschreibung
This book is a revised and expanded edition of the classic 1979 volume that originally appeared in Springer's Biomathematics series. The author remains one of the leading researchers in the field of theoretical population genetics, a subject of growing import...This book is a revised and expanded edition of the classic 1979 volume that originally appeared in Springer's Biomathematics series. The author remains one of the leading researchers in the field of theoretical population genetics, a subject of growing importance given the recent advances in molecular biology and DNA sequencing.
New, expanded edition of a well-known and highly-regarded classic that originally appeared in Springer's Biomathematics series in 1979 Includes supplementary material: sn.pub/extras
Autorentext
Warren Ewens is an Emeritus Professor of Biology at the University of Pennsylvania. His research interests focus on the use of Statistics in genetics, in particular in describing the evolutionary process in genetical terms and in DNA sequence analysis.Katherine Brumberg is a PhD candidate in Statistics and Data Science at the Wharton School of the University of Pennsylvania. Her research interests focus on causal inference, in particular attaining optimal covariate balance in observational studies.
Klappentext
This book is a revised and expanded edition of the classic 1979 volume that originally appeared in Springer's Biomathematics series. The author remains one of the leading researchers in the field of theoretical population genetics, a subject of growing importance given the recent advances in molecular biology and DNA sequencing.
Inhalt
1 Historical Background.- 1.1 Biometricians, Saltationists and Mendelians.- 1.2 The Hardy-Weinberg Law.- 1.3 The Correlation Between Relatives.- 1.4 Evolution.- 1.5 Evolved Genetic Phenomena.- 1.6 Modelling.- 1.7 Overall Evolutionary Theories.- 2 Technicalities and Generalizations.- 2.1 Introduction.- 2.2 Random Union of Gametes.- 2.3 Dioecious Populations.- 2.4 Multiple Alleles.- 2.5 Frequency-Dependent Selection.- 2.6 Fertility Selection.- 2.7 Continuous-Time Models.- 2.8 Non-Random-Mating Populations.- 2.9 The Fundamental Theorem of Natural Selection.- 2.10 Two Loci.- 2.11 Genetic Loads.- 2.12 Finite Markov Chains.- 3 Discrete Stochastic Models.- 3.1 Introduction.- 3.2 Wright-Fisher Model: Two Alleles.- 3.3 The Cannings (Exchangeable) Model: Two Alleles.- 3.4 Moran Models: Two Alleles.- 3.5 K-Allele Wright-Fisher Models.- 3.6 Infinitely Many Alleles Models.- 3.7 The Effective Population Size.- 3.8 Frequency-Dependent Selection.- 3.9 Two Loci.- 4 Diffusion Theory.- 4.1 Introduction.- 4.2 The Forward and Backward Kolmogorov Equations.- 4.3 Fixation Probabilities.- 4.4 Absorption Time Properties.- 4.5 The Stationary Distribution.- 4.6 Conditional Processes.- 4.7 Diffusion Theory.- 4.8 Multi-dimensional Processes.- 4.9 Time Reversibility.- 4.10 Expectations of Functions of Diffusion Variables.- 5 Applications of Diffusion Theory.- 5.1 Introduction.- 5.2 No Selection or Mutation.- 5.3 Selection.- 5.4 Selection: Absorption Time Properties.- 5.5 One-Way Mutation.- 5.6 Two-Way Mutation.- 5.7 Diffusion Approximations and Boundary Conditions.- 5.8 Random Environments.- 5.9 Time-Reversal and Age Properties.- 5.10 Multi-Allele Diffusion Processes.- 6 Two Loci.- 6.1 Introduction.- 6.2 Evolutionary Properties of Mean Fitness.- 6.3 Equilibrium Points.- 6.4 Special Models.- 6.5 Modifier Theory.- 6.6 Two-Locus Diffusion Processes.- 6.7 Associative Overdominance and Hitchhiking.- 6.8 The Evolutionary Advantage of Recombination.- 6.9 Summary.- 7 Many Loci.- 7.1 Introduction.- 7.2 Notation.- 7.3 The Random Mating Case.- 7.4 Non-Random Mating.- 7.5 The Correlation Between Relatives.- 7.6 Summary.- 8 Further Considerations.- 8.1 Introduction.- 8.2 What is Fitness?.- 8.3 Sex Ratio.- 8.4 Geographical Structure.- 8.5 Age Structure.- 8.6 Ecological Considerations.- 8.7 Sociobiology.- 9 Molecular Population Genetics: Introduction.- 9.1 Introduction.- 9.2 Technical Comments.- 9.3 Infinitely Many Alleles Models: Population Properties..- 9.4 Infinitely Many Sites Models: Population Properties.- 9.5 Sample Properties of Infinitely Many Alleles Models..- 9.6 Sample Properties of Infinitely Many Sites Models.- 9.7 Relation Between Infinitely Many Alleles and Infinitely Many Sites Models.- 9.8 Genetic Variation Within and Between Populations.- 9.9 Age-Ordered Alleles: Frequencies and Ages.- 10 Looking Backward in Time: The Coalescent.- 10.1 Introduction.- 10.2 Competing Poisson and Geometric Processes.- 10.3 The Coalescent Process.- 10.4 The Coalescent and Its Relation to Evolutionary Genetic Models.- 10.5 Coalescent Calculations: Wright-Fisher Models.- 10.6 Coalescent Calculations: Exact Moran Model Results.- 10.7 General Comments.- 10.8 The Coalescent and Human Genetics.- 11 Looking Backward: Testing the Neutral Theory.- 11.1 Introduction.- 11.2 Testing in the Infinitely Many Alleles Models.- 11.3 Testing in the Infinitely Many Sites Models.- 12 Looking Backward in Time: Population and Species Comparisons.- 12.1 Introduction.- 12.2 Various Evolutionary Models.- 12.3 Some Implications.- 12.4 Statistical Procedures.- Appendix A: Eigenvalue Calculations.- References.- Author Index.
Tief- preis
