Willkommen, schön sind Sie da!
Logo Ex Libris

List Decoding of Error-Correcting Codes

  • Kartonierter Einband
  • 376 Seiten
(0) Erste Bewertung abgeben
Alle Bewertungen ansehen
How can one exchange information e?ectively when the medium of com- nication introduces errors? This question has been investigate... Weiterlesen
115.00 CHF 92.00
Sie sparen CHF 23.00
Print on Demand - Auslieferung erfolgt in der Regel innert 4 bis 6 Wochen.
Bestellung & Lieferung in eine Filiale möglich


How can one exchange information e?ectively when the medium of com- nication introduces errors? This question has been investigated extensively starting with the seminal works of Shannon (1948) and Hamming (1950), and has led to the rich theory of error-correcting codes. This theory has traditionally gone hand in hand with the algorithmic theory of decoding that tackles the problem of recovering from the errors e?ciently. This thesis presents some spectacular new results in the area of decoding algorithms for error-correctingcodes. Speci?cally,itshowshowthenotionoflist-decoding can be applied to recover from far more errors, for a wide variety of err- correcting codes, than achievable before. A brief bit of background: error-correcting codes are combinatorial str- tures that show how to represent (or encode) information so that it is - silient to a moderate number of errors. Speci?cally, an error-correcting code takes a short binary string, called the message, and shows how to transform it into a longer binary string, called the codeword, so that if a small number of bits of the codewordare ?ipped, the resulting string does not look like any other codeword. The maximum number of errorsthat the code is guaranteed to detect, denoted d, is a central parameter in its design. A basic property of such a code is that if the number of errors that occur is known to be smaller than d/2, the message is determined uniquely. This poses a computational problem,calledthedecodingproblem:computethemessagefromacorrupted codeword, when the number of errors is less than d/2.

Includes supplementary material: sn.pub/extras

1 Introduction.- 1 Introduction.- 2 Preliminaries and Monograph Structure.- I Combinatorial Bounds.- 3 Johnson-Type Bounds and Applications to List Decoding.- 4 Limits to List Decodability.- 5 List Decodability Vs. Rate.- II Code Constructions and Algorithms.- 6 Reed-Solomon and Algebraic-Geometric Codes.- 7 A Unified Framework for List Decoding of Algebraic Codes.- 8 List Decoding of Concatenated Codes.- 9 New, Expander-Based List Decodable Codes.- 10 List Decoding from Erasures.- III Applications.- Interlude.- III Applications.- 11 Linear-Time Codes for Unique Decoding.- 12 Sample Applications Outside Coding Theory.- 13 Concluding Remarks.- A GMD Decoding of Concatenated Codes.


Titel: List Decoding of Error-Correcting Codes
Untertitel: Winning Thesis of the 2002 ACM Doctoral Dissertation Competition
EAN: 9783540240518
ISBN: 3540240519
Format: Kartonierter Einband
Herausgeber: Springer Berlin Heidelberg
Genre: Informatik
Anzahl Seiten: 376
Gewicht: 569g
Größe: H235mm x B155mm x T20mm
Jahr: 2004
Untertitel: Englisch
Auflage: 2005

Weitere Produkte aus der Reihe "Lecture Notes in Computer Science"