

Beschreibung
This is the proceedings of the 4th International Conference on Strain-Hardening Cement-Based Composites (SHCC4), that was held at the Technische Universität Dresden, Germany from 18 to 20 September 2017. The conference focused on advanced fiber-reinforced con...This is the proceedings of the 4th International Conference on Strain-Hardening Cement-Based Composites (SHCC4), that was held at the Technische Universität Dresden, Germany from 18 to 20 September 2017. The conference focused on advanced fiber-reinforced concrete materials such as strain-hardening cement-based composites (SHCC), textile-reinforced concrete (TRC) and high-performance fiber-reinforced cement-based composites (HPFRCC). All these new materials exhibit pseudo-ductile behavior resulting from the formation of multiple, fine cracks when subject to tensile loading. The use of such types of fiber-reinforced concrete could revolutionize the planning, development, dimensioning, structural and architectural design, construction of new and strengthening and repair of existing buildings and structures in many areas of application. The SHCC4 Conference was the follow-up of three previous successful international events in Stellenbosch, South Africa in 2009, Rio de Janeiro, Brazilin 2011, and Dordrecht, The Netherlands in 2014.
Includes supplementary material: sn.pub/extras
Inhalt
Foreword.- Keynote Speeches.- Micromechanics-based design of strain hardening cementitious composites (SHCC), by Junxia Lia, Jishen Qiu, Shan He, En-Hua Yang.- Performance-Based Design of SHCC Components Research and Challenges, by Christopher K.Y. Leung.- Performance Enhancement of Concrete Structures through Multi-Scale Crack Control, by Gabriel Jen and Claudia Ostertag.- Strengthening and Repair with Carbon Concrete Composites the First General Building Approval in Germany, by Silke Scheerer, Elisabeth Schütze and Manfred Curbach.- Performance of Fiber Reinforced Materials: Historic Perspective and Glance in the Future, by Surendra Shah and Yuan Gao,- Applications of SHCC in Japan Tools and tips for promoting its use, by Keitetsu Rokugo.- Material Design of TRC and TRC Impact Resistance, by Alva Peled.- Part 1. Material Design and Mechanical Testing.- High Performance Fiber Reinforced Materials: Historic Perspective and Glance in the Future, by Surendra Shah, Yuan Gao.-Micromechanics-based design of strain hardening cementitious composites (SHCC), by Junxia Li, Jishen Qiu, Shan He, En-Hua Yang.- Derivation of Crack Bridging Stresses in Fiber Reinforced Cementitious Composites under Combined Opening and Shear Displacements, by Chang Wu, Christopher K.Y Leung.- Bridging Stress of Inclined Fiber in Cementitious Composites Based on Large Deflection Beam Theory, by Jie Yao, Christopher K. Y Leung.- The effect of fiber orientation on the mechanical properties of SHCC, by Cong Lu, Christopher K. Y. Leung, Jinlong Pan.- Novel Experimental Method to Determine Crack-Bridging Constitutive Relationship of SHCC Using Digital Image Processing, by Jing Yu, Christopher K. Y.Leung.- Healing of interface between polyvinyl alcohol (PVA) fiber and cement matrix, by Jishen Qiu, En-Hua Yang.- Micromechanics of An Ultra Lightweight Engineered Cementitious Composite Containing Polymeric Latex Admixture, by Qian Zhang, Victor C. Li.- Effects of Embedment Length and Angle of PVA-Fibers on Tensile Performance of FRC, by Shota Yoneyama, Satoru Sakai, Takumi Kojima, Koichi Kobayashi, Keitetisu Rokugo.- Evaluation of Shear and Tensile Bridging Characteristics of PVA Fibers Based on Bridging Law, by Yuriko Ozu,.- Hiroshi.- Yamada, Akira Yasojima, Toshiyuki Kanakubo.- A Multiscale Model for High-Performance FRC, by Jithender J. Timothy, Tagir Iskhakov, Yijian Zhan, Günther Meschke.- Modelling and experimental characterization of the tensile response of Ultra-High Performance Fibre-Reinforced Cementitious Composites, by Amin Abrishambaf, Mário Pimentel, Sandra Nunes.- Mechanical properties of ductile cementitious composites incorporating microencapsulated phase change materials, by Erik Schlangen, Branko Savija, Stefan Chaves Figuieredo, Fernando Franca de Mendoca Filho, Mladena Lukovic.- A Comparative Study on Deflection-hardening Behavior of Ductile Alkali-activated Composite, by Shizhe Zhang, Marija Nedeljkovi, Bahman Ghiassi, Guang Ye.- Effectiveness of Fabricating High Performance Fiber Reinforced Cementitious Composite (HPFRCC) Using High Volume Steel Slag Powder, by Xuanchun Wie, Xinhua Cai, Peng Wu, Jun Su, Zhen He, Shengwen Tang.- Influence of Coarse Aggregate on the Mechanical Behavior of Strain Hardening Cementitious Composites, by Naoshi Ueda, Atsushi Kawamoto.- Development of a cementitious composites with tensile strain capacity up to 10%, by K.L. Zhan, J.T. Yu, Y.C. Wang, K.Q. Yu.- Sustainable fiber-reinforced strain-hardening composites using geopolymer as complete replacement of Portland cement, by Behzad Nematollahi, Jay Sanjayan.- Development of high strength and high ductility cementitious composites incorporating CNF-coated polyethylene fibers, by Shan He, Jishen Qiu, Junxia Li, En-Hua Yang.- Effect of basalt fibers on mechanical properties of high-performance concrete containing supplementary cementitious materials, by Jisong Zhang, Yinghua Zhao, Haijiang Li.- Effects of Nylon Fibre and Concrete Strength on the Shrinkage and Fracture Behaviour of Fibre Reinforced Concrete, by Dogac S.Ozsar, Fatih Ozalp, H. Dilsad Yilmaz, Burcu Akcay.- Development of a Steel-PVA Hybrid Fiber SHCC, by Alok A.Deshpande, Dhanendra Kumar, Anandharam Mourougassamy, Ravi Ranade.- Performance Analysis of Hybrid Fibers on High Volume Fly Ash Cement Mortar, by Mahzabin Afroz, Indubhushan Patnaikuni, Srikanth Venkatesan.- Physical and Mechanical Properties of Ultra-High Strength and High Ductility Cementitious Composites, by Dong-Yi Lei, Li-Ping Guo.- Influence of Distribution Modulus of Particle Size Distribution on Rheological and Mechanical Properties of Ultra-High-Strength SHCC Matrix, by Ketan Ragalwar, H.Nguyen, R. Ranade, W. F. Heard, B. A.Williams.- Mechanical Characteristics of Ultra High Performance Strain Hardening Cementitious Composites, by Ke-Quan Yu, Jiang-Tao Yu, Zhou-Dao Lu.- Tensile characterization of a eco-friendly UHPFRC with waste glass powder and glass sand, by Mohammed Mousa, Estefania Cuenca, Liberato Ferrara, Nathalie Roy, Arezki Tagnit-Hamou.- Ecological and Mechanical Properties of Ultra High Performance Fiber Reinforced Cementitious Composites containing High Volume Fly Ash, by Tomoya Nishiwaki, Keita Suzuki, Sukmin Kwon, Go Igarashi, Alessandro P. Fantilli.- Influence of fiber type on the tensile behavior of strain-hardening cement-based composites (SHCC) under impact loading, by Iurie Curosu, Viktor Mechtcherine, Daniele Forni, Ezio Cadoni.- Effect of strain rate and fiber type on tensile behavior of high-strength strain-hardening cement-based composites (HS-SHCC), by Ali Assadzadeh Heravi, Olga Smirnova, Viktor Mechtcherine.- Interphases in cementitious matrix: effect of fibers, sizings, and loading rates, by Christina Scheffler, Serge Zhandarov, Enrico Wölfel, Edith Mäder.- Development a Proper Mix-Design for Impact Loading of Deflection Hardening Hybrid Fiber Reinforced Concrete, by Mohammad Musa Alami, Tahir Kemal Erdem, MertYücel Yardmc, Serdar Aydn.- The Influence of Multiple Micro-cracking on the Electrical Impedance of an Engineered Cementitious Composite, by D. Saraireh, S. Walls, B. Suryanto, G. Starrs, W. J. McCarter.- Combination of digital image correlation and acoustic emission for characterizing failure modes in strain-hardening cement-based composites (SHCC), by Stephan M. Pirskawetz, Götz Hüsken, Iurie Curosu, Viktor Mechtcherine.- Experimental study of tensile response of Strain Hardening UHPFRC at early age, by M.A. Hafiz, Emmanuel Denarie.- Determination of the Uniaxial Tensile Strength of Concrete with a Modified Test Setup, by Christian Neunzig, Thomas Heiermann, M.Raupach.- Effect of fiber orientation and specimen thickness on the tensile response of strain hardening UHPFRC mixes with reduced Embodied Energy, by Amir Hajiesmaeili, Emmanuel Denarie.- Effects of Temperature on Tensile Performance of PVA-SHCC, by Keitetisu Rokugo, Daichi…
