Willkommen, schön sind Sie da!
Logo Ex Libris

Progress in Inverse Spectral Geometry

  • Fester Einband
  • 197 Seiten
(0) Erste Bewertung abgeben
Alle Bewertungen ansehen
most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t O. General refere... Weiterlesen
CHF 192.00
Print on demand - Exemplar wird für Sie besorgt.


most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x,O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(·, t) = V(t)uoU· Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt,E ®E), locally given by 00 K(x,y; t) = L-IAk(~k ® 'Pk)(X,y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::- k. k=O Now, using, e. g. , the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.


This volume aims to present a comprehensive overview of the research frontline in inverse spectral geometry in the late-1990s. It contains 19 papers originating from a conference dealing with this field of study.


Spectral Geometry: An Introduction and Background Material for this Volume.- Geometry Detected by a Finite Part of the Spectrum.- Spectral Geometry on Nilmanifolds.- Upper Bounds for the Poincaré Metric Near a Fractal Boundary.- Construction de Variétés Isospectrales du Théorème de T. Sunada.- Inverse spectral theory for Riemannian foliations and curvature theory.- Computer Graphics and the Eigenfunctions for the Koch Snowflake Drum.- Inverse Spectral Geometry.- Inverse Spectral Geometry on Riemann Surfaces.- Quantum Ergodicity.


Titel: Progress in Inverse Spectral Geometry
EAN: 9783764357559
ISBN: 978-3-7643-5755-9
Format: Fester Einband
Genre: Mathematik
Anzahl Seiten: 197
Gewicht: 1050g
Größe: H235mm x B235mm x T155mm
Jahr: 1997
Auflage: 1997. 1997

Weitere Produkte aus der Reihe "Trends in Mathematics"