Willkommen, schön sind Sie da!
Logo Ex Libris

Measure Theory and Probability Theory

  • Kartonierter Einband
  • 640 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
This is a graduate level textbook on measure theory and probability theory. It presents the main concepts and results in measure t... Weiterlesen
CHF 116.00
Print on Demand - Auslieferung erfolgt in der Regel innert 4 bis 6 Wochen.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

This is a graduate level textbook on measure theory and probability theory. It presents the main concepts and results in measure theory and probability theory. It further provides heuristic explanations behind the theory to help students see the big picture.


This book arose out of two graduate courses that the authors have taught duringthepastseveralyears;the?rstonebeingonmeasuretheoryfollowed by the second one on advanced probability theory. The traditional approach to a ?rst course in measure theory, such as in Royden (1988), is to teach the Lebesgue measure on the real line, then the p di?erentation theorems of Lebesgue, L -spaces on R, and do general m- sure at the end of the course with one main application to the construction of product measures. This approach does have the pedagogic advantage of seeing one concrete case ?rst before going to the general one. But this also has the disadvantage in making many students' perspective on m- sure theory somewhat narrow. It leads them to think only in terms of the Lebesgue measure on the real line and to believe that measure theory is intimately tied to the topology of the real line. As students of statistics, probability, physics, engineering, economics, and biology know very well, there are mass distributions that are typically nonuniform, and hence it is useful to gain a general perspective. This book attempts to provide that general perspective right from the beginning. The opening chapter gives an informal introduction to measure and integration theory. It shows that the notions of ?-algebra of sets and countable additivity of a set function are dictated by certain very na- ral approximation procedures from practical applications and that they are not just some abstract ideas.

Presents the main concepts and results in measure theory and probability theory in a simple and easy-to-understand way

Provides heuristic explanations behind the theory to help students see the big picture



Klappentext

This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix.

The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement.

Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales.

Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes.

Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.



Inhalt
Measures and Integration: An Informal Introduction.- Measures.- Integration.- Lp-Spaces.- Differentiation.- Product Measures, Convolutions, and Transforms.- Probability Spaces.- Independence.- Laws of Large Numbers.- Convergence in Distribution.- Characteristic Functions.- Central Limit Theorems.- Conditional Expectation and Conditional Probability.- Discrete Parameter Martingales.- Markov Chains and MCMC.- Stochastic Processes.- Limit Theorems for Dependent Processes.- The Bootstrap.- Branching Processes.

Produktinformationen

Titel: Measure Theory and Probability Theory
Autor:
EAN: 9781441921918
ISBN: 1441921915
Format: Kartonierter Einband
Herausgeber: Springer New York
Genre: Mathematik
Anzahl Seiten: 640
Gewicht: 955g
Größe: H235mm x B155mm x T34mm
Jahr: 2010
Auflage: Softcover reprint of hardcover 1st ed. 2006

Weitere Produkte aus der Reihe "Springer Texts in Statistics"