Geben Sie Ihre E-Mail-Adresse oder Handynummer ein und Sie erhalten einen direkten Link, um die kostenlose Reader-App herunterzuladen.
Die Ex Libris-Reader-App ist für iOS und Android erhältlich. Weitere Informationen zu unseren Apps finden Sie hier.
The Primality Testing Problem (PTP) has now proved to be solvable in deterministic polynomial-time (P) by the AKS (Agrawal-Kayal-Saxena) algorithm, whereas the Integer Factorization Problem (IFP) still remains unsolvable in (P). There is still no polynomial-time algorithm for IFP. Many practical public-key cryptosystems and protocols such as RSA (Rivest-Shamir-Adleman) rely their security on computational intractability of IFP.
Primality Testing and Integer Factorization in Public Key Cryptography, Second Edition, provides a survey of recent progress in primality testing and integer factorization, with implications to factoring based public key cryptography. Notable new features are the comparison of Rabin-Miller probabilistic test in RP, Atkin-Morain elliptic curve test in ZPP and AKS deterministic test.
This volume is designed for advanced level students in computer science and mathematics, and as a secondary text or reference book; suitable for practitioners and researchers in industry.
First edition was very positively reviewed by Prof Samuel Wagstaff at Purdue University in AMS Mathematical Reviews (See MR2028480 2004j:11148), and by Professor J.T. Ayuso of University of Simon Bolivar in the European Mathematical Society's review journal Zentralblatt für Mathematik (see Zbl 1048.11103).
New section on quantum factoring and post-quantum cryptography
Exercises and research problems grouped into new section after each chapter; thus more suitable as advanced graduate text
Although the Primality Testing Problem (PTP) has been proved to be solvable in deterministic polynomial-time (P) in 2002 by Agrawal, Kayal and Saxena, the Integer Factorization Problem (IFP) still remains unsolvable in P. The security of many practical Public-Key Cryptosystems and Protocols such as RSA (invented by Rivest, Shamir and Adleman) relies on the computational intractability of IFP. This monograph provides a survey of recent progress in Primality Testing and Integer Factorization, with implications to factoring-based Public Key Cryptography.
Notable features of this second edition are the several new sections and more than 100 new pages that are added. These include a new section in Chapter 2 on the comparison of Rabin-Miller probabilistic test in RP, Atkin-Morain elliptic curve test in ZPP and AKS deterministic test in P; a new section in Chapter 3 on recent work in quantum factoring; and a new section in Chapter 4 on post-quantum cryptography.
To make the book suitable as an advanced undergraduate and/or postgraduate text/reference, about ten problems at various levels of difficulty are added at the end of each section, making about 300 problems in total contained in the book; most of the problems are research-oriented with prizes ordered by individuals or organizations to a total amount over five million US dollars.
Primality Testing and Integer Factorization in Public Key Cryptography is designed for practitioners and researchers in industry and graduate-level students in computer science and mathematics.
Titel: | Primality Testing and Integer Factorization in Public-Key Cryptography |
Autor: | |
EAN: | 9780387772677 |
ISBN: | 0387772677 |
Format: | Fester Einband |
Herausgeber: | Springer US |
Genre: | Informatik |
Anzahl Seiten: | 392 |
Gewicht: | 752g |
Größe: | H241mm x B160mm x T26mm |
Jahr: | 2008 |
Untertitel: | Englisch |
Auflage: | 2nd ed. 2009 |
Sie haben bereits bei einem früheren Besuch Artikel in Ihren Warenkorb gelegt. Ihr Warenkorb wurde nun mit diesen Artikeln ergänzt. |