Willkommen, schön sind Sie da!
Logo Ex Libris

Adaptive Multiscale Schemes for Conservation Laws

  • Kartonierter Einband
  • 204 Seiten
(0) Erste Bewertung abgeben
Alle Bewertungen ansehen
During the last decade enormous progress has been achieved in the field of computational fluid dynamics. This became possible by t... Weiterlesen
CHF 130.00
Print on Demand - Auslieferung erfolgt in der Regel innert 4 bis 6 Wochen.
Bestellung & Lieferung in eine Filiale möglich


During the last decade enormous progress has been achieved in the field of computational fluid dynamics. This became possible by the development of robust and high-order accurate numerical algorithms as well as the construc tion of enhanced computer hardware, e. g. , parallel and vector architectures, workstation clusters. All these improvements allow the numerical simulation of real world problems arising for instance in automotive and aviation indus try. Nowadays numerical simulations may be considered as an indispensable tool in the design of engineering devices complementing or avoiding expen sive experiments. In order to obtain qualitatively as well as quantitatively reliable results the complexity of the applications continuously increases due to the demand of resolving more details of the real world configuration as well as taking better physical models into account, e. g. , turbulence, real gas or aeroelasticity. Although the speed and memory of computer hardware are currently doubled approximately every 18 months according to Moore's law, this will not be sufficient to cope with the increasing complexity required by uniform discretizations. The future task will be to optimize the utilization of the available re sources. Therefore new numerical algorithms have to be developed with a computational complexity that can be termed nearly optimal in the sense that storage and computational expense remain proportional to the "inher ent complexity" (a term that will be made clearer later) problem. This leads to adaptive concepts which correspond in a natural way to unstructured grids.

1 Model Problem and Its Discretization.- 1.1 Conservation Laws.- 1.2 Finite Volume Methods.- 2 Multiscale Setting.- 2.1 Hierarchy of Meshes.- 2.2 Motivation.- 2.3 Box Wavelet.- 2.3.1 Box Wavelet on a Cartesian Grid Hierarchy.- 2.3.2 Box Wavelet on an Arbitrary Nested Grid Hierarchy.- 2.4 Change of Stable Completion.- 2.5 Box Wavelet with Higher Vanishing Moments.- 2.5.1 Definition and Construction.- 2.5.2 A Univariate Example.- 2.5.3 A Remark on Compression Rates.- 2.6 Multiscale Transformation.- 3 Locally Refined Spaces.- 3.1 Adaptive Grid and Significant Details.- 3.2 Grading.- 3.3 Local Multiscale Transformation.- 3.4 Grading Parameter.- 3.5 Locally Uniform Grids.- 3.6 Algorithms: Encoding, Thresholding, Grading, Decoding.- 3.7 Conservation Property.- 3.8 Application to Curvilinear Grids.- 4 Adaptive Finite Volume Scheme.- 4.1 Construction.- 4.1.1 Strategies for Local Flux Evaluation.- 4.1.2 Strategies for Prediction of Details.- 4.2 A gorithms: Initial data, Prediction, Fluxes and Evolution.- 5 Error Analysis.- 5.1 Perturbation Error.- 5.2 Stability of Approximation.- 5.3 Reliability of Prediction.- 6 Data Structures and Memory Management.- 6.1 Algorithmic Requirements and Design Criteria.- 6.2 Hashing.- 6.3 Data Structures.- 7 Numerical Experiments.- 7.1 Parameter Studies.- 7.1.1 Test Configurations.- 7.1.2 Discretization.- 7.1.3 Computational Complexity and Stability.- 7.1.4 Hash Parameters.- 7.2 Real World Application.- 7.2.1 Configurations.- 7.2.2 Discretization.- 7.2.3 Discussion of Results.- A Plots of Numerical Experiments.- B The Context of Biorthogonal Wavelets.- B.1 General Setting.- B.1.1 Multiscale Basis.- B.1.2 Stable Completion.- B.1.3 Multiscale Transformation.- B.2 Biorthogonal Wavelets of the Box Function.- B.2.1 Haar Wavelets.- B.2.2 Biorthogonal Wavelets on the Real Line.- References.- List of Figures.- List of Tables.- Notation.


Titel: Adaptive Multiscale Schemes for Conservation Laws
EAN: 9783540443254
ISBN: 3540443258
Format: Kartonierter Einband
Herausgeber: Springer Berlin Heidelberg
Genre: Mathematik
Anzahl Seiten: 204
Gewicht: 318g
Größe: H235mm x B155mm x T11mm
Jahr: 2002
Auflage: Softcover reprint of the original 1st ed. 2003

Weitere Produkte aus der Reihe "Lecture Notes in Computational Science and Engineering"