

Beschreibung
Klappentext Highly regarded for its accessibility and focus on practical applications, Control Systems Engineering offers students a comprehensive introduction to the design and analysis of feedback systems that support modern technology. Going beyond theory a...Klappentext Highly regarded for its accessibility and focus on practical applications, Control Systems Engineering offers students a comprehensive introduction to the design and analysis of feedback systems that support modern technology. Going beyond theory and abstract mathematics to translate key concepts into physical control systems design, this text presents real-world case studies, challenging chapter questions, and detailed explanations with an emphasis on computer aided design. Abundant illustrations facilitate comprehension, with over 800 photos, diagrams, graphs, and tables designed to help students visualize complex concepts.Multiple experiment formats demonstrate essential principles through hypothetical scenarios, simulations, and interactive virtual models, while Cyber Exploration Laboratory Experiments allow students to interface with actual hardware through National Instruments' myDAQ for real-world systems testing. This emphasis on practical applications has made it the most widely adopted text for core courses in mechanical, electrical, aerospace, biomedical, and chemical engineering. Now in its eighth edition, this top-selling text continues to offer in-depth exploration of up-to-date engineering practices. Zusammenfassung Highly regarded for its accessibility and focus on practical applications, Control Systems Engineering offers students a comprehensive introduction to the design and analysis of feedback systems that support modern technology. Going beyond theory and abstract mathematics to translate key concepts into physical control systems design, this text presents real-world case studies, challenging chapter questions, and detailed explanations with an emphasis on computer aided design. Abundant illustrations facilitate comprehension, with over 800 photos, diagrams, graphs, and tables designed to help students visualize complex concepts.Multiple experiment formats demonstrate essential principles through hypothetical scenarios, simulations, and interactive virtual models, while Cyber Exploration Laboratory Experiments allow students to interface with actual hardware through National Instruments' myDAQ for real-world systems testing. This emphasis on practical applications has made it the most widely adopted text for core courses in mechanical, electrical, aerospace, biomedical, and chemical engineering. Now in its eighth edition, this top-selling text continues to offer in-depth exploration of up-to-date engineering practices. Inhaltsverzeichnis PREFACE, vii 1 INTRODUCTION, 1 1.1 Introduction, 2 1.2 A History of Control Systems, 4 1.3 System Con gurations, 6 1.4 Analysis and Design Objectives, 9 Case Study, 11 1.5 The Design Process, 14 1.6 Computer-Aided Design, 19 1.7 The Control Systems Engineer, 20 Summary, 21 Review Questions, 22 Cyber Exploration Laboratory, 22 Bibliography, 23 2 MODELING IN THE FREQUENCY DOMAIN, 25 2.1 Introduction, 26 2.2 Laplace Transform Review, 27 2.3 The Transfer Function, 36 2.4 Electrical Network Transfer Functions, 39 2.5 Translational Mechanical System Transfer Functions, 53 2.6 Rotational Mechanical System Transfer Functions, 61 2.7 Transfer Functions for Systems with Gears, 65 2.8 Electromechanical System Transfer Functions, 69 2.9 Electric Circuit Analogs, 75 2.10 Nonlinearities, 78 2.11 Linearization, 79 Case Studies, 84 Summary, 87 Review Questions, 87 Cyber Exploration Laboratory, 88 Hardware Interface Laboratory, 91 Bibliography, 93 3. MODELING IN THE TIME DOMAIN, 95 3.1 Introduction, 96 3.2 Some Observations, 96 3.3 The General State-Space Representation, 100 3.4 Applying the State-Space Representation, 102 3.5 Converting a Transfer Function to State Space, 110 3.6 Converting from State Space to a Transfer Function, 116 3.7 Linearization, 1181 INTRODUCTION, 1
1.1 Introduction, 2
1.2 A History of Control Systems, 4
1.3 System Con gurations, 6
1.4 Analysis and Design Objectives, 9
Case Study, 11
1.5 The Design Process, 14
1.6 Computer-Aided Design, 19
1.7 The Control Systems Engineer, 20
Summary, 21
Review Questions, 22
Cyber Exploration Laboratory, 22
Bibliography, 23
2 MODELING IN THE FREQUENCY DOMAIN, 25
2.1 Introduction, 26
2.2 Laplace Transform Review, 27
2.3 The Transfer Function, 36
2.4 Electrical Network Transfer Functions, 39
2.5 Translational Mechanical System Transfer Functions, 53
2.6 Rotational Mechanical System Transfer Functions, 61
2.7 Transfer Functions for Systems with Gears, 65
2.8 Electromechanical System Transfer Functions, 69
2.9 Electric Circuit Analogs, 75
2.10 Nonlinearities, 78
2.11 Linearization, 79
Case Studies, 84
Summary, 87
Review Questions, 87
Cyber Exploration Laboratory, 88
Hardware Interface Laboratory, 91
Bibliography, 93
3. MODELING IN THE TIME DOMAIN, 95
3.1 Introduction, 96
3.2 Some Observations, 96
3.3 The General State-Space Representation, 100
3.4 Applying the State-Space Representation, 102
3.5 Converting a Transfer Function to State Space, 110
3.6 Converting from State Space to a Transfer Function, 116
3.7 Linearization, 118
Case Studies, 121
Summary, 125
Review Questions, 126
Cyber Exploration Laboratory, 126
Bibliography, 128
4 TIME RESPONSE, 130
4.1 Introduction, 131
4.2 Poles, Zeros, and System Response, 131
4.3 First-Order Systems, 135
4.4 Second-Order Systems: Introduction, 137
4.5 The General Second-Order System, 142
4.6 Underdamped Second-Order Systems, 146
4.7 System Response with Additional Poles, 155
4.8 System Response with Zeros, 159
4.9 Effects of Nonlinearities upon Time Response, 165
4.10 Laplace Transform Solution of State Equations, 167
4.11 Time Domain Solution of State Equations, 171
Case Studies, 175 Summary, 181
Review Questions, 182
Cyber Exploration Laboratory, 183
Hardware Interface Laboratory, 186
Bibliography, 192
5. REDUCTION OF MULTIPLE SUBSYSTEMS, 194
5.1 Introduction, 195
5.2 Block Diagrams, 195
5.3 Analysis and Design of Feedback Systems, 204
5.4 Signal-Flow Graphs, 207
5.5 Mason's Rule, 210
5.6 Signal-Flow Graphs of State Equations, 213
5.7 Alternative Representations in State Space, 215
5.8 Similarity Transformations, 224
Case Studies, 231
Summary, 237
Review Questions, 237
Cyber Exploration Laboratory, 238
Bibliography, 240
6. STABILITY, 242
6.1Introduction, 243
6.2Routh-Hurwitz Criterion, 246
6.3Routh-Hurwitz Criterion: Special Cases, 248
6.4Routh-Hurwitz Criterion: Additional Examples, 254
6.5 Stability in State Space, 261
Case Studies, 264
Summary, 266
Review Questions, 266
Cyber Exploration Laboratory, 267
Bibliography, 268
7. STEADY-STATE ERRORS, 270
7.1 Introduction, 271
7.2 Steady-State Error for Unity Feedback Systems, 274
7.3 Static Error Constants and System Type, 280
7.4 Steady-State Error Speci cations, 283
7.5 Steady-State Error for Disturbances, 286
7.6 Steady-State Error for Nonunity- Feedback Systems, 288
7.7 Sensitivity, 291
7.8 Steady-State Error for Systems in State Space, 294
Case Studies, 297 Summary, 300
Review Questions, 301
Cyber Exploration Laboratory, 302 Bibliography, 303
8 ROOT LOCUS TECHNIQUES, 305
8.1 Introduction, 306
8.2 De ning the Root Locus, 310
8.3 Properties of the Root Locus, 312
8.4 Sketching the Root Locus, 314
8.5 Re ning the Sketch, 319
8.6 An Example, 328
8.7Transient Response Design via Gain Adjustment, 331
8.8 Generalized Root Locus, 335
8.9 Root Locus for Positive-Feedback Systems, 337
8.10 Pole Sensitivity, 339
Case Studies, 341
Summary, 346
Review Questions, 347
Cyber Exploration Laboratory, 347
Hardware Interface Laboratory, 349
Bibliography, 356
9. DESIGN VIA ROOT LOCUS, 358
9.1 Introduction, 359
9.2 Improving Steady-State Error via Cascade Compensation, 362
9.3 Improving Transient Response via Cascade Compensation, 371
9.4 Improving Steady-State Error and Transient Response, 383
9.5 Fe…
