Willkommen, schön sind Sie da!
Logo Ex Libris

Topological Invariants of Stratified Spaces

  • Kartonierter Einband
  • 276 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
The homology of manifolds enjoys a remarkable symmetry: Poincaré duality. If the manifold is triangulated, then this duality can b... Weiterlesen
CHF 122.00
Print on Demand - Auslieferung erfolgt in der Regel innert 4 bis 6 Wochen.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

The homology of manifolds enjoys a remarkable symmetry: Poincaré duality. If the manifold is triangulated, then this duality can be established by associating to a s- plex its dual block in the barycentric subdivision. In a manifold, the dual block is a cell, so the chain complex based on the dual blocks computes the homology of the manifold. Poincaré duality then serves as a cornerstone of manifold classi cation theory. One reason is that it enables the de nition of a fundamental bordism inva- ant, the signature. Classifying manifolds via the surgery program relies on modifying a manifold by executing geometric surgeries. The trace of the surgery is a bordism between the original manifold and the result of surgery. Since the signature is a b- dism invariant, it does not change under surgery and is thus a basic obstruction to performing surgery. Inspired by Hirzebruch's signature theorem, a method of Thom constructs characteristic homology classes using the bordism invariance of the s- nature. These classes are not in general homotopy invariants and consequently are ne enough to distinguish manifolds within the same homotopy type. Singular spaces do not enjoy Poincaré duality in ordinary homology. After all, the dual blocks are not cells anymore, but cones on spaces that may not be spheres. This book discusses when, and how, the invariants for manifolds described above can be established for singular spaces.

Contains highlights never before presented in book form

Includes complete and very detailed proofs of decomposition theorems for self-dual sheaves, and explanation of methods for computing twisted characteristic classes

Contains an introduction to the author's theory of non-Witt spaces and Lagrangian structures



Autorentext

EMPLOYMENT: Since 2004: Professor at the Ruprecht-Karls-Universität Heidelberg, Germany
2002 - 2004: Assistant Professor (tenure track) at the University of Cincinnati, USA
1999 - 2002: Van Vleck Assistant Professor at the University of Wisconsin - Madison, USA

EDUCATION: Ph.D. Mathematics, Courant Institute (New York University), May 1999.
Field: Topology.
Dissertation Title: Extending Intersection Homology Type Invariants to non-Witt Spaces.

RESEARCH AREA: Algebraic and Geometric Topology, Stratified Spaces.



Klappentext

The central theme of this book is the restoration of Poincaré duality
on stratified singular spaces by using Verdier-self-dual sheaves such
as the prototypical intersection chain sheaf on a complex variety.

After carefully introducing sheaf theory, derived categories,
Verdier duality, stratification theories, intersection homology,
t-structures and perverse sheaves, the ultimate objective is to explain
the construction as well as algebraic and geometric properties of
invariants such as the signature and characteristic classes effectuated
by self-dual sheaves.

Highlights never before presented in book form include complete and
very detailed proofs of decomposition theorems for self-dual sheaves,
explanation of methods for computing twisted characteristic classes
and an introduction to the author's theory of non-Witt spaces and
Lagrangian structures.



Inhalt
Elementary Sheaf Theory.- Homological Algebra.- Verdier Duality.- Intersection Homology.- Characteristic Classes and Smooth Manifolds.- Invariants of Witt Spaces.- T-Structures.- Methods of Computation.- Invariants of Non-Witt Spaces.- L2 Cohomology.

Produktinformationen

Titel: Topological Invariants of Stratified Spaces
Autor:
EAN: 9783642072482
ISBN: 3642072488
Format: Kartonierter Einband
Herausgeber: Springer Berlin Heidelberg
Anzahl Seiten: 276
Gewicht: 423g
Größe: H235mm x B155mm x T14mm
Jahr: 2010
Auflage: Softcover reprint of hardcover 1st ed. 2007

Weitere Produkte aus der Reihe "Springer Monographs in Mathematics"