Willkommen, schön sind Sie da!
Logo Ex Libris

Differential Forms and Applications

  • Kartonierter Einband
  • 136 Seiten
(0) Erste Bewertung abgeben
Alle Bewertungen ansehen
Dieses Buch vom M. do Carmo, Träger des Mathematikpreises 1992 der "Third World Academy of Sciences", gibt eine Einführu... Weiterlesen
78.00 CHF 62.40
Sie sparen CHF 15.60
Print on Demand - Auslieferung erfolgt in der Regel innert 4 bis 6 Wochen.
Bestellung & Lieferung in eine Filiale möglich


Dieses Buch vom M. do Carmo, Träger des Mathematikpreises 1992 der "Third World Academy of Sciences", gibt eine Einführung in die Theorie differenzierbarer Formen. Da es nur Grundkenntnisse in Differential- und Integralrechnung sowie linearer Algebra voraussetzt, eignet es sich als Lehrbuch für Mathematik- und Physikstudenten im 4.- 6. Semester.

This is a free translation of a set of notes published originally in Portuguese in 1971. They were translated for a course in the College of Differential Geome try, ICTP, Trieste, 1989. In the English translation we omitted a chapter on the Frobenius theorem and an appendix on the nonexistence of a complete hyperbolic plane in euclidean 3-space (Hilbert's theorem). For the present edition, we introduced a chapter on line integrals. In Chapter 1 we introduce the differential forms in Rn. We only assume an elementary knowledge of calculus, and the chapter can be used as a basis for a course on differential forms for "users" of Mathematics. In Chapter 2 we start integrating differential forms of degree one along curves in Rn. This already allows some applications of the ideas of Chapter 1. This material is not used in the rest of the book. In Chapter 3 we present the basic notions of differentiable manifolds. It is useful (but not essential) that the reader be familiar with the notion of a regular surface in R3. In Chapter 4 we introduce the notion of manifold with boundary and prove Stokes theorem and Poincare's lemma. Starting from this basic material, we could follow any of the possi ble routes for applications: Topology, Differential Geometry, Mechanics, Lie Groups, etc. We have chosen Differential Geometry. For simplicity, we re stricted ourselves to surfaces.

This book by M. do Carmo, winner of the 1992 Mathematics Price of the Third World Academy of Sciences, gives an introduction to the theory of differentiable forms. Since it only assumes elementary calculus and elementary linear algebra, it is suitable for second year undergraduate and graduate students in mathematics and physics.


M.P. Do Carmo

Differential Forms and Applications

"This book treats differential forms and uses them to study some local and global aspects of differential geometry of surfaces. Each chapter is followed by interesting exercises. Thus, this is an ideal book for a one-semester course."-ACTA SCIENTIARUM MATHEMATICARUM

1. Differential Forms in Rn.- 2. Line Integrals.- 3. Differentiable Manifolds.- 4. Integration on Manifolds; Stokes Theorem and Poincaré's Lemma.- 1. Integration of Differential Forms.- 2. Stokes Theorem.- 3. Poincaré's Lemma.- 5. Differential Geometry of Surfaces.- 1. The Structure Equations of Rn.- 2. Surfaces in R3.- 3. Intrinsic Geometry of Surfaces.- 6. The Theorem of Gauss-Bonnet and the Theorem of Morse.- 1. The Theorem of Gauss-Bonnet.- 2. The Theorem of Morse.- References.


Titel: Differential Forms and Applications
Untertitel: Universitext
EAN: 9783540576181
ISBN: 3540576185
Format: Kartonierter Einband
Herausgeber: Springer Berlin Heidelberg
Genre: Mathematik
Anzahl Seiten: 136
Gewicht: 219g
Größe: H235mm x B155mm x T7mm
Jahr: 1998
Auflage: 1st ed. 1994. Corr. 2nd printing 1998
Land: DE

Weitere Produkte aus der Reihe "Universitext"