1. Adventsüberraschung: 10% Rabatt auf alle Filme! Jetzt mehr erfahren.
Willkommen, schön sind Sie da!
Logo Ex Libris

Machine Learning and Knowledge Discovery in Databases

  • Kartonierter Einband
  • 816 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
The three volume proceedings LNAI 11906 11908 constitutes the refereed proceedings of the European Conference on Machine Learning... Weiterlesen
CHF 135.00
Print on Demand - Auslieferung erfolgt in der Regel innert 4 bis 6 Wochen.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

The three volume proceedings LNAI 11906 11908 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, held in Würzburg, Germany, in September 2019.

The total of 130 regular papers presented in these volumes was carefully reviewed and selected from 733 submissions; there are 10 papers in the demo track.

The contributions were organized in topical sections named as follows:

Part I: pattern mining; clustering, anomaly and outlier detection, and autoencoders; dimensionality reduction and feature selection; social networks and graphs; decision trees, interpretability, and causality; strings and streams; privacy and security; optimization.

Part II: supervised learning; multi-label learning; large-scale learning; deep learning; probabilistic models; natural language processing.

Part III: reinforcement learning and bandits; ranking; applied data science: computer vision and explanation; applied data science: healthcare; applied data science: e-commerce, finance, and advertising; applied data science: rich data; applied data science: applications; demo track.

Chapter "Heavy-tailed Kernels Reveal a Finer Cluster Structure in t-SNE Visualisations" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.



Klappentext

The three volume proceedings LNAI 11906 - 11908 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, held in Würzburg, Germany, in September 2019.
The total of 130 regular papers presented in these volumes was carefully reviewed and selected from 733 submissions; there are 10 papers in the demo track.


The contributions were organized in topical sections named as follows:


Part I: pattern mining; clustering, anomaly and outlier detection, and autoencoders; dimensionality reduction and feature selection; social networks and graphs; decision trees, interpretability, and causality; strings and streams; privacy and security; optimization.


Part II: supervised learning; multi-label learning; large-scale learning; deep learning; probabilistic models; natural language processing.


Part III: reinforcement learning and bandits; ranking; applied data science: computer vision and explanation; applied data science: healthcare; applied data science: e-commerce, finance, and advertising; applied data science: rich data; applied data science: applications; demo track.


Chapter "Heavy-tailed Kernels Reveal a Finer Cluster Structure in t-SNE Visualisations" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.



Inhalt
Pattern Mining.- Clustering, Anomaly and Outlier Detection, and Autoencoders.- Dimensionality Reduction and Feature Selection.- Social Networks and Graphs.- Decision Trees, Interpretability, and Causality.- Strings and Streams.- Privacy and Security.- Optimization.

Produktinformationen

Titel: Machine Learning and Knowledge Discovery in Databases
Untertitel: European Conference, ECML PKDD 2019, Würzburg, Germany, September 16-20, 2019, Proceedings, Part I
Editor:
EAN: 9783030461492
ISBN: 3030461491
Format: Kartonierter Einband
Herausgeber: Springer International Publishing
Anzahl Seiten: 816
Gewicht: 1212g
Größe: H235mm x B155mm x T43mm
Jahr: 2020
Untertitel: Englisch
Auflage: 1st ed. 2020

Weitere Produkte aus der Reihe "Lecture Notes in Artificial Intelligence"