Willkommen, schön sind Sie da!
Logo Ex Libris

Measure Theory and Probability Theory

  • Fester Einband
  • 618 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
This is a graduate level textbook on measure theory and probability theory. It presents the main concepts and results in measure t... Weiterlesen
CHF 165.00
Auslieferung erfolgt in der Regel innert 2 bis 4 Werktagen.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

This is a graduate level textbook on measure theory and probability theory. It presents the main concepts and results in measure theory and probability theory. It further provides heuristic explanations behind the theory to help students see the big picture.


From the reviews:

"...There are interesting and non-standard topics that are not usually included in a first course in measture-theoretic probability including Markov Chains and MCMC, the bootstrap, limit theorems for martingales and mixing sequences, Brownian motion and Markov processes. The material is well-suported with many end-of-chapter problems." D.L. McLeish for Short Book Reviews of the ISI, December 2006

"The reader sees not only how measure theory is used to develop probability theory, but also how probability theory is used in applications. The discourse is delivered in a theorem proof format and thus is better suited for classroom . The authors prose is generally well thought out . will make an attractive choice for a two-semester course on measure and probability, or as a second course for students with a semester of measure or probability theory under their belt." (Peter C. Kiessler, Journal of the American Statistical Association, Vol. 102 (479), 2007)

"The book is a well written self-contained textbook on measure and probability theory. It consists of 18 chapters. Every chapter contains many well chosen examples and ends with several problems related to the earlier developed theory (some with hints). At the very end of the book there is an appendix collecting necessary facts from set theory, calculus and metric spaces. The authors suggest a few possibilities on how to use their book." (Kazimierz Musial, Zentralblatt MATH, Vol. 1125 (2), 2008)

"The title of the book consists of the names of its two basic parts. The book's third part is comprised of some special topics from probability theory. The authors suggest using the book in two-semester graduate programs in statistics or a one-semester seminar on special topics. The material of the book is standard is clear, comprehensive and 'without being intimidating'." (Rimas Norvaia, Mathematical Reviews, Issue 2007 f)

"Probabilists have a special relationship to measure theory. The style of writing is clear and precise . Its wide range of topics and results makes Measure Theory and Probability Theory not only a splendid textbook but also a nice addition to any probabilist's reference library. a researcher in need of a reference work, or just somebody who wants to learn some measure theory to lighten up your life, Measure Theory and Probability Theory is an excellent text that I highly recommend." (Peter Olofsson, SIAM Review, Vol. 49 (3), 2007)



Klappentext

This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix.

The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement.

Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales.

Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes.

Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.



Zusammenfassung
This book arose out of two graduate courses that the authors have taught duringthepastseveralyears;the?rstonebeingonmeasuretheoryfollowed by the second one on advanced probability theory. The traditional approach to a ?rst course in measure theory, such as in Royden (1988), is to teach the Lebesgue measure on the real line, then the p di?erentation theorems of Lebesgue, L -spaces on R, and do general m- sure at the end of the course with one main application to the construction of product measures. This approach does have the pedagogic advantage of seeing one concrete case ?rst before going to the general one. But this also has the disadvantage in making many students' perspective on m- sure theory somewhat narrow. It leads them to think only in terms of the Lebesgue measure on the real line and to believe that measure theory is intimately tied to the topology of the real line. As students of statistics, probability, physics, engineering, economics, and biology know very well, there are mass distributions that are typically nonuniform, and hence it is useful to gain a general perspective. This book attempts to provide that general perspective right from the beginning. The opening chapter gives an informal introduction to measure and integration theory. It shows that the notions of ?-algebra of sets and countable additivity of a set function are dictated by certain very na- ral approximation procedures from practical applications and that they are not just some abstract ideas.

Inhalt
Measures and Integration: An Informal Introduction.- Measures.- Integration.- Lp-Spaces.- Differentiation.- Product Measures, Convolutions, and Transforms.- Probability Spaces.- Independence.- Laws of Large Numbers.- Convergence in Distribution.- Characteristic Functions.- Central Limit Theorems.- Conditional Expectation and Conditional Probability.- Discrete Parameter Martingales.- Markov Chains and MCMC.- Stochastic Processes.- Limit Theorems for Dependent Processes.- The Bootstrap.- Branching Processes.

Produktinformationen

Titel: Measure Theory and Probability Theory
Autor:
EAN: 9780387329031
ISBN: 038732903X
Format: Fester Einband
Herausgeber: Springer-Verlag GmbH
Genre: Mathematik
Anzahl Seiten: 618
Gewicht: 1115g
Größe: H241mm x B160mm x T40mm
Veröffentlichung: 01.08.2006
Jahr: 2006

Weitere Produkte aus der Reihe "Springer Texts in Statistics"