

Beschreibung
Visualization has become increasingly important for many types of biomedial applications. This book collects the latest results in the development of visualization methods in this field. Itgivesmegreatpleasuretoeditthisbook. Thegenesisofthisbookgoes backtothec...Visualization has become increasingly important for many types of biomedial applications. This book collects the latest results in the development of visualization methods in this field.
Itgivesmegreatpleasuretoeditthisbook. Thegenesisofthisbookgoes backtotheconferenceheldattheUniversityofBolognainJune1999,on collaborativeworkbetweentheUniversityofCaliforniaatBerkeleyandthe UniversityofBologna. Theoriginalideawastoinvitesomespeakersatthe conferencetosubmitarticlestothebook. Thescopeofthebookwaslater- hancedand,inthepresentform,itisacompilationofsomeoftherecentwork usinggeometricpartialdi?erentialequationsandthelevelsetmethodology inmedicalandbiomedicalimageanalysis. Thesynopsisofthebookisasfollows:Inthe?rstchapter,R. Malladi andJ. A. Sethianpointtotheoriginsoftheuseoflevelsetmethodsand geometricPDEsforsegmentation,andpresentfastmethodsforshapes- mentationinbothmedicalandbiomedicalimageapplications. InChapter 2,C. OrtizdeSolorzano,R. Malladi,andS. J. Lockettdescribeabodyof workthatwasdoneoverthepastcoupleofyearsattheLawrenceBerkeley NationalLaboratoryonapplicationsoflevelsetmethodsinthestudyand understandingofconfocalmicroscopeimagery. TheworkinChapter3byA. Sarti,C. Lamberti,andR. Malladiaddressestheproblemofunderstanding di?culttimevaryingechocardiographicimagery. Thisworkpresentsvarious levelsetmodelsthataredesignedto?tavarietyofimagingsituations,i. e. timevarying2D,3D,andtimevarying3D. InChapter4,L. VeseandT. F. Chanpresentasegmentationmodelwithoutedgesandalsoshowextensions totheMumford-Shahmodel. Thismodelisparticularlypowerfulincertain applicationswhencomparisonsbetweennormalandabnormalsubjectsis- quired. Next,inChapter5,A. EladandR. Kimmelusethefastmarching methodontriangulateddomaintobuildatechniquetounfoldthecortexand mapitontoasphere. Thistechniqueismotivatedinpartbynewadvances infMRIbasedneuroimaging. InChapter6,T. DeschampsandL. D. Cohen presentaminimalpathbasedmethodofgroupingconnectedcomponentsand showcleverapplicationsinvesseldetectionin3Dmedicaldata. Finally,in Chapter7,A. Sarti,K. Mikula,F. Sgallari,andC. Lamberti,describean- linearmodelfor?lteringtimevarying3Dmedicaldataandshowimpressive resultsinbothultrasoundandechoimages. IoweadebtofgratitudetoClaudioLambertiandAlessandroSartifor invitingmetoBologna,andlogisticalsupportfortheconference. Ithank thecontributingauthorsfortheirenthusiasmand?exibility,theSpringer mathematicseditorMartinPetersforhisoptimismandpatience,andJ. A. Sethianforhisunfailingsupport,goodhumor,andguidancethroughthe years. Berkeley,California R. Malladi October,2001 Contents 1 FastMethodsforShapeExtractioninMedicaland BiomedicalImaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 R. Malladi,J. A. Sethian 1. 1Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2TheFastMarchingMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 3ShapeRecoveryfromMedicalImages. . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 4Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 AGeometricModelforImageAnalysisinCytology. . . . . . . 19 C. OrtizdeSolorzano,R. Malladi,,S. J. Lockett 2. 1Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2. 2GeometricModelforImageAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2. 3SegmentationofNuclei. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2. 4SegmentationofNucleiandCellsUsingMembrane-RelatedProtein Markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2. 5Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 LevelSetModelsforAnalysisof2Dand3D EchocardiographicData. . . . . . . . . . . . . . . .
Inhalt
1 Fast Methods for Shape Extraction in Medical and Biomedical Imaging.- 1.1 Introduction.- 1.2 The Fast Marching Method.- 1.3 Shape Recovery from Medical Images.- 1.4 Results.- References.- 2 A Geometric Model for Image Analysis in Cytology.- 2.1 Introduction.- 2.2 Geometric Model for Image Analysis.- 2.3 Segmentation of Nuclei.- 2.4 Segmentation of Nuclei and Cells Using Membrane-Related Protein Markers.- 2.5 Conclusions.- References.- 3 Level Set Models for Analysis of 2D and 3D Echocardiographic Data.- 3.1 Introduction.- 3.2 The Geometric Evolution Equation.- 3.3 The Shock-Type Filtering.- 3.4 Shape Extraction.- 3.5 2D Echocardiography.- 3.6 2D + time Echocardiography.- 3.7 3D Echocardiography.- 3.8 3D + time Echocardiography.- 3.9 Conclusions.- References.- 4 Active Contour and Segmentation Models using Geometric PDE's for Medical Imaging.- 4.1 Introduction.- 4.2 Description of the Models.- 4.3 Applications to Bio-Medical Images.- 4.4 Concluding Remarks.- References.- 5 Spherical Flattening of the Cortex Surface.- 5.1 Introduction.- 5.2 Fast Marching Method on Triangulated Domains.- 5.3 Multi-Dimensional Scaling.- 5.4 Cortex Unfolding.- 5.5 Conclusions.- References.- 6 Grouping Connected Components using Minimal Path Techniques.- 6.1 Introduction.- 6.2 Minimal Paths in 2D and 3D.- 6.3 Finding Contours from a Set of Connected Components Rk.- 6.4 Finding a Set of Paths in a 3D Image.- 6.5 Conclusion.- References.- 7 Nonlinear Multiscale Analysis Models for Filtering of 3D + Time Biomedical Images.- 7.1 Introduction.- 7.2 Nonlinear Diffusion Equations for Processing of 2D and 3D Still*Images.- 7.3 Space-Time Filtering Nonlinear Diffusion Equations.- 7.4 Numerical Algorithm.- 7.5 Discussion on Numerical Experiments.- 7.6 Preconditioning and Solving of Linear Systems.-References.- Appendix. Color Plates.