

Beschreibung
Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measure...Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5.
Provides unique, comprehensive coverage of generalisation and regularisation: Provides the first real-world test results for recent theoretical findings on the generalisation performance of committees
Klappentext
This volume presents a neural network architecture for the prediction of conditional probability densities - which is vital when carrying out universal approximation on variables which are either strongly skewed or multimodal. Two alternative approaches are discussed: the GM network, in which all parameters are adapted in the training scheme, and the GM-RVFL model which draws on the random functional link net approach. Points of particular interest are: - it examines the modification to standard approaches needed for conditional probability prediction; - it provides the first real-world test results for recent theoretical findings about the relationship between generalisation performance of committees and the over-flexibility of their members; This volume will be of interest to all researchers, practitioners and postgraduate / advanced undergraduate students working on applications of neural networks - especially those related to finance and pattern recognition.
Zusammenfassung
Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal.
Inhalt
