

Beschreibung
This ERGEBNISSE volume provides a comprehensive and detailed account of the research in the field of quantum groups. The book is a sequel to J. Dixmier: "Algebres enveloppantes", Gauthier-Villars 1974 and J.-C. Jantzen: "Einhüllende Algebren halbeinfacher Lie-...This ERGEBNISSE volume provides a comprehensive and detailed account of the research in the field of quantum groups. The book is a sequel to J. Dixmier: "Algebres enveloppantes", Gauthier-Villars 1974 and J.-C. Jantzen: "Einhüllende Algebren halbeinfacher Lie-Algebren", Springer-Verlag 1983. It is an important reference work for graduate students and researchers in algebra, the theory of Lie algebras, mathematical physics.
Klappentext
The primary aim of this book is an in-depth study of the Drinfeld-Jimbo quantization Uq(g) of the enveloping algebra U(g) of a semisimple Lie algebra g and of the Hopf dual Rq (G) of Uq(g). The focus is on determining the primitive spectra of these rings. A systematic use of Hopf algebra structure, and in particular of adjoint action, is to be made. There will be an emphasis on "quantum phenomena" which are new features of Uq(g) and on how these can be used to even simplify the study of U(g). The reader will learn how the quantum viewpoint has revitalized the study of enveloping algebras and will become acquainted with proofs which have been developed over the last 20 years into a particularly efficient form. Many of the results are now only just being published in research journals.
Inhalt
I. Hopf Algebras.- 1.1 Axioms of a Hopf Algebra.- 1.2 Group Algebras and Enveloping Algebras.- 1.3 Adjoint Action.- 1.4 The Hopf Dual.- 1.5 Comments and Complements.- 2. Excerpts from the Classical Theory.- 2.1 Lie Algebras.- 2.2 Algebraic Lie Algebras.- 2.3 Algebraic Groups.- 2.4 Lie Algebras of Algebraic Groups.- 2.5 Comments and Complements.- 3. Encoding the Cartan Matrix.- 3.1 Quantum Weyl Algebras.- 3.2 The Drinfeld Double.- 3.3 The Rosso Form and the Casimir Invariant.- 3.4 The Classical Limit and the Shapovalev Form.- 3.5 Comments and Complements.- 4. Highest Weight Modules.- 4.1 The Jantzen Filtration and Sum Formula.- 4.2 Kac-Moody Lie Algebras.- 4.3 Integrable Modules for Uq(gc).- 4.4 Demazure Modules and Product Formulae.- 4.5 Comments and Complements.- 5. The Crystal Basis.- 5.1 Operators in the Crystal Limit.- 5.2 Crystals.- 5.3 Ad-invariant Filtrations, Twisted Actions and the Crystal Basis for Uq(n-).- 5.4 The Grand Loop.- 5.5 Comments and Complements.- 6. The Global Bases.- 6.1 The ? Operation and the Embedding Theorem.- 6.2 Globalization.- 6.3 The Demazure Property.- 6.4 Littelmann's Path Crystals.- 6.5 Comments and Complements.- 7. Structure Theorems for Uq(g).- 7.1 Local Finiteness for the Adjoint Action.- 7.2 Positivity of the Rosso Form.- 7.3 The Separation Theorem.- 7.4 Noetherianity.- 7.5 Comments and Complements.- 8. The Primitive Spectrum of Uq(g).- 8.1 The Poincaré Series of the Harmonic Space.- 8.2 Factorization of the Quantum PRV Determinants.- 8.3 Verma Module Annihilators.- 8.4 Equivalence of Categories.- 8.5 Comments and Complements.- 9. Structure Theorems for Rq[G].- 9.1 Commutativity Relations.- 9.2 Surjectivity and Injectivity Theorems.- 9.3 The Adjoint Action.- 9.4 The R-Matrix.- 9.5 Comments and Complements.- 10. The PrimeSpectrum of Rq[G].- 10.1 Highest Weight Modules.- 10.2 The Quantum Weyl Group.- 10.3 Prime and Primitive Ideals of Rq[G].- 10.4 Hopf Algebra Automorphisms.- 10.5 Comments and Complements.- A.2 Excerpts from Ring Theory.- A.3 Combinatorial Identities and Dimension Theory.- A.4 Remarks on Constructions of Quantum Groups.- A.5 Comments and Complements.- Index of Notation.
10%
