

Beschreibung
With a good balance of introductory material on the knowledge discovery process, advanced issues and state-of-the-art tools and techniques, this book will be useful to students at Masters and PhD level in Computer Science, as well as practitioners in the field...With a good balance of introductory material on the knowledge discovery process, advanced issues and state-of-the-art tools and techniques, this book will be useful to students at Masters and PhD level in Computer Science, as well as practitioners in the field.
Knowledge discovery takes the raw results from data mining (the process of extracting trends or patterns from data) and carefully and accurately transforms them into useful and understandable information. In this book, active practitioners and leading researchers detail recent advances in knowledge discovery. Coverage presents a good balance of introductory material on the knowledge discovery process, advanced issues, and state-of-the-art tools and techniques. An overview of the field, looking at the issues and challenges involved, is followed by coverage of recent trends and important applications of advanced data mining techniques in areas such as life sciences, world-wide web, image databases, cyber security, and sensor networks.
Covers a variety of advanced data mining techniques Does not limit discussion to one specific domain area First book to focus on advances on the synergy between application domains and algorithm types rather than limit the scope to a particular domain / type Includes supplementary material: sn.pub/extras
Autorentext
Prof. Sanghamitra Bandyopadhyay has many years of experience in the development of soft computing techniques. Among other awards and positions, she has received senior researcher Humboldt Fellowships, and she is a regular visitor to the DKFZ (German Cancer Research Centre) and to European and North American universities, collaborating in multidisciplinary teams on applications in the areas of computational biology and bioinformatics. Among other awards Prof. Bandyopadhyay received the prestigious Shanti Swarup Bhatnagar Prize in Engineering Sciences in 2010, she is a Fellow of the National Academy of Sciences of India and she is a Fellow of the Indian National Academy of Engineering. Dr. Sriparna Saha is an assistant professor in the Indian Institute of Technology Patna. Among her positions and awards, she was a postdoctoral researcher in Trento and in Heidelberg, and she received the Google India Women in Engineering Award in 2008. Her research interests include multiobjective optimization, evolutionary computation, clustering, and pattern recognition.
Klappentext
Advanced Methods for Knowledge Discovery from Complex Data brings together research articles by active practitioners and leading researchers reporting recent advances in the field of knowledge discovery, where the information is mined from complex data, such as unstructured text from the world-wide web, databases naturally represented as graphs and trees, geoscientific data from satellites and visual images, multimedia data and bioinformatics data.
An overview of the field, looking at the issues and challenges involved is followed by coverage of recent trends in data mining, including descriptions of some currently popular tools like genetic algorithms, neural networks and case-based reasoning. This provides the context for the subsequent chapters on methods and applications. Part I is devoted to the foundations of mining different types of complex data like trees, graphs, links and sequences. A knowledge discovery approach based on problem decomposition is also described. Part II presents important applications of advanced mining techniques to data in unconventional and complex domains, such as life sciences, world-wide web, image databases, cyber security and sensor networks.
With a good balance of introductory material on the knowledge discovery process, advanced issues and state-of-the-art tools and techniques, as well as recent working applications this book provides a representative selection of the available methods and their evaluation in real domains. It will be useful to students at Masters and PhD level in Computer Science, as well as practitioners in the field. A website supports the book: http://www.cse.uta.edu/amkdcd.
Inhalt
Foundations.- Knowledge Discovery and Data Mining.- Automatic Discovery of Class Hierarchies via Output Space Decomposition.- Graph-based Mining of Complex Data.- Predictive Graph Mining with Kernel Methods.- TreeMiner: An Efficient Algorithm for Mining Embedded Ordered Frequent Trees.- Sequence Data Mining.- Link-based Classification.- Applications.- Knowledge Discovery from Evolutionary Trees.- Ontology-Assisted Mining of RDF Documents.- Image Retrieval using Visual Features and Relevance Feedback.- Significant Feature Selection Using Computational Intelligent Techniques for Intrusion Detection.- On-board Mining of Data Streams in Sensor Networks.- Discovering an Evolutionary Classifier over a High-speed Nonstatic Stream.
