Willkommen, schön sind Sie da!
Logo Ex Libris

Advanced Lectures on Machine Learning

  • Kartonierter Einband
  • 256 Seiten
(0) Erste Bewertung abgeben
Bewertungen & Rezensionen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and th... Weiterlesen
20%
72.00 CHF 57.60
Sie sparen CHF 14.40
Print on Demand - Auslieferung erfolgt in der Regel innert 4 bis 6 Wochen.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600.

This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references.

Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.



Inhalt
An Introduction to Pattern Classification.- Some Notes on Applied Mathematics for Machine Learning.- Bayesian Inference: An Introduction to Principles and Practice in Machine Learning.- Gaussian Processes in Machine Learning.- Unsupervised Learning.- Monte Carlo Methods for Absolute Beginners.- Stochastic Learning.- to Statistical Learning Theory.- Concentration Inequalities.

Produktinformationen

Titel: Advanced Lectures on Machine Learning
Untertitel: ML Summer Schools 2003, Canberra, Australia, February 2-14, 2003, Tübingen, Germany, August 4-16, 2003, Revised Lectures
Editor:
EAN: 9783540231226
ISBN: 3540231226
Format: Kartonierter Einband
Herausgeber: Springer Berlin Heidelberg
Genre: Informatik
Anzahl Seiten: 256
Gewicht: 394g
Größe: H235mm x B155mm x T13mm
Jahr: 2004
Untertitel: Englisch
Auflage: 2004

Weitere Produkte aus der Reihe "Lecture Notes in Computer Science"