Willkommen, schön sind Sie da!
Logo Ex Libris

Buoyancy-Thermocapillary Convection of Volatile Fluids in Confined and Sealed Geometries

  • E-Book (pdf)
  • 209 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
This thesis represents the first systematic description of the two-phase flow problem. Two-phase flows of volatile fluids in conf... Weiterlesen
CHF 141.90
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

This thesis represents the first systematic description of the two-phase flow problem. Two-phase flows of volatile fluids in confined geometries driven by an applied temperature gradient play an important role in a range of applications, including thermal management, such as heat pipes, thermosyphons, capillary pumped loops and other evaporative cooling devices. Previously, this problem has been addressed using a piecemeal approach that relied heavily on correlations and unproven assumptions, and the science and technology behind heat pipes have barely evolved in recent decades. The model introduced in this thesis, however, presents a comprehensive physically based description of both the liquid and the gas phase.

The model has been implemented numerically and successfully validated against the available experimental data, and the numerical results are used to determine the key physical processes that control the heat and mass flow and describe the flow stability. One of the key contributions of this thesis work is the description of the role of noncondensables, such as air, on transport. In particular, it is shown that many of the assumptions used by current engineering models of evaporative cooling devices are based on experiments conducted at atmospheric pressures, and these assumptions break down partially or completely when most of the noncondensables are removed, requiring a new modeling approach presented in the thesis.

Moreover, Numerical solutions are used to motivate and justify a simplified analytical description of transport in both the liquid and the gas layer, which can be used to describe flow stability and determine the critical Marangoni number and wavelength describing the onset of the convective pattern. As a result, the results presented in the thesis should be of interest both to engineers working in heat transfer and researchers interested in fluid dynamics and pattern formation.



Autorentext

Dr Tongran Qin was awarded a PhD degree by Georgia Institute of Technology in 2015.






Inhalt

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Previous Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Buoyancy-Thermocapillary Convection . . . . . . . . . . . . . . 3

1.2.2 Modeling of Two-Phase Cooling Devices . . . . . . . . . . . . . 7

1.2.3 Effect of Noncondensable Gases . . . . . . . . . . . . . . . . . . 14

1.2.4 Direct Numerical Simulation of Two-Phase Flows . . . . . . . . . 18

1.3 Objectives of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CHAPTER 2 MATHEMATICAL MODEL . . . . . . . . . . . . . . . . . . . . 24

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Fundamental Equations for Simple Fluid Flow . . . . . . . . . . . . . . . 25

2.3 Fundamental Equations for Binary Fluid Flow . . . . . . . . . . . . . . . 26

2.4 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Equations of State . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Molecular Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3 Material Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Simplified Form of the Governing Equations . . . . . . . . . . . . . . . . 33

2.6 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 Liquid-Gas Interface . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.2 Inner Surface of the Cavity . . . . . . . . . . . . . . . . . . . . . 42

2.6.3 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 42

CHAPTER 3 CONVECTION AT ATMOSPHERIC CONDITIONS . . . . . . 44

3.1 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Steady Unicellular and Multicellular Flow . . . . . . . . . . . . . 48

3.1.2 Oscillatory Multicellular Flow . . . . . . . . . . . . . . . . . . . 52

3.2 Comparison with Experiments . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 The Effect of the Interfacial Curvature . . . . . . . . . . . . . . . . . . . 59

3.4 Three-Dimensional Effects . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.1 Fluid Flow and Temperature in the Liquid Layer . . . . . . . . . . 71

3.5.2 Fluid Flow, Temperature, and Composition in the Gas Layer . . . 73

3.6 End Wall Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7 Validity of the One-Sided Models . . . . . . . . . . . . . . . . . . . . . . 79

3.7.1 Interface Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7.2 Phase Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.7.3 Newton's Law of Cooling . . . . . . . . . . . . . . . . . . . . . . 82

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

CHAPTER 4 CONVECTION UNDER PURE VAPOR . . . . . . . . . . . . . 88

4.1 Fluid Flow and Temperature Fields . . . . . . . . . . . . . . . . . . . . . 89

4.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 Interfacial Temperature . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.2 Thermal Boundary Layer Thickness . . . . . . . . . . . . . . . . 97

4.2.3 Interfacial Flow Speed . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.4 Newton's Law of Cooling . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Comparison of Different Phase Change Models . . . . . . . . . . . . . . 101

4.4 Dependence on the Accommodation Coeffcient . . . . . . . . . . . . . . 105

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

CHAPTER 5 CONVECTION AT REDUCED PRESSURES . . . . . . . . . . 110

5.1 Solutions in the Bulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1.1 Flow Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1.2 Temperature Field . . . . . . . . . . . . . . . . . . . . . . ....

Produktinformationen

Titel: Buoyancy-Thermocapillary Convection of Volatile Fluids in Confined and Sealed Geometries
Autor:
EAN: 9783319613314
ISBN: 978-3-319-61331-4
Format: E-Book (pdf)
Hersteller: Springer International Publishing
Herausgeber: Springer
Genre: Physik, Astronomie
Veröffentlichung: 25.07.2017
Digitaler Kopierschutz: Wasserzeichen
Dateigrösse: 6.37 MB
Anzahl Seiten: 209
Jahr: 2017

Weitere Bände aus der Buchreihe "Springer Theses"