2. Adventsüberraschung: 10% Rabatt auf alle Spiele! Jetzt mehr erfahren.
Willkommen, schön sind Sie da!
Logo Ex Libris

Theory, Numerics and Applications of Hyperbolic Problems I

  • E-Book (pdf)
  • 706 Seiten
(0) Erste Bewertung abgeben
Alle Bewertungen ansehen
The first of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbo... Weiterlesen
CHF 183.90
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich


The first of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.


Christian Klingenberg is a professor in the Department of Mathematics at Wuerzburg University, Germany. 

Michael Westdickenberg is a professor at the Institute for Mathematics at RWTH Aachen University, Germany.


Chapter 1: Helmut Abels, Johannes Daube, Christiane Kraus and Dietmar Kröner: The Sharp-Interface Limit for the NavierStokesKorteweg Equations

Chapter 2: E. Abreu, A. Bustos and W. J. Lambert: Asymptotic behavior of a solution of relaxation system for ow in porous media

Chapter 3: Angelo Alessandri, Patrizia Bagnerini, Roberto Cianci, Mauro Gaggeroi: Optimal control of level sets generated by the normal flow equation

Chapter 4: Debora Amadori and Jinyeong Park: Emergent dynamics for the kinetic Kuramoto equation

Chapter 5: Matthieu Ancellin, Laurent Brosset and Jean-Michel Ghidaglia: A hyperbolic model of non-equilibrium phase change at a sharp liquid-vapor interface

Chapter 6: Paolo Antonelli, Michele D'Amico and Pierangelo Marcati: The Cauchy problem for the Maxwell-Schrodinger system with a power-type nonlinearity

Chapter 7: Denise Aregba-Driollet and Stephane Brull: Construction and approximation of the polyatomic bitemperature Euler system

Chapter 8: K. R. Arun, A. J. Das Gupta and S. Samantaray; An implicit-explicit scheme accurate at low Mach numbers for the wave equation system

Chapter 9: Joshua Ballew: Bose-Einstein Condensation and Global Dynamics of Solutions to a Hyperbolic Kompaneets Equation

Chapter 10: Andrea Barth and Ilja Kroker: Finite volume methods for hyperbolic partial differential equations with spatial noise

Chapter 11: Hubert Baty and Hiroaki Nishikawa: A hyperbolic approach for dissipative magnetohydrodynamics

Chapter 12: Jonas Berberich, Praveen Chandrashekar, Christian Klingenberg: A general well-balanced nite volume scheme for Euler equations with gravity

Chapter 13: Christophe Berthon, Raphal Loubre and Victor Michel-Dansac: A second-order well-balanced scheme for the shallow-water equations with topography

Chapter 14: Stefano Bianchini and Elio Marconi: A Lagrangian approach to scalar conservation laws

Chapter 15: Paolo Bonicatto: On uniqueness of weak solutions to transport equation with non-smooth velocity eld

Chapter 16: Sebastien Boyaval: Johnson-Segalman Saint-Venant equations for a 1D viscoelastic shallow ow in pure elastic limit

Chapter 17: Michael D. Bragin and Boris V. Rogov: On the Exact Dimensional Splitting for a Scalar Quasilinear Hyperbolic Conservation Law

Chapter 18: Yann Brenier: On the derivation of the Newtonian gravitation from the Brownian agrigation of a regular lattice

Chapter 19: Alberto Bressan: Trafc flow models on a network of roads

Chapter 20: A. Brunk, N. Kolbe, and N. Sfakianakis: Chemotaxis and haptotaxis on cellular level

Chapter 21: Pawel Buchmuller, Jurgen Dreher and Christiane Helzel: Improved accuracy of high-order WENO finite volume methods on Cartesian grids with adaptive mesh renement

Chapter 22: Pablo Castaneda: Explicit construction of effective ux functions for Riemann solutions

Chapter 23: Pierre Castelli, Pierre-Emmanuel Jabin, Stephane Junca: Fractional spaces and conservation laws

Chapter 24: Manuel J. Castro, José M. Gallardo and Antonio Marquina: Jacobian-free incomplete Riemann solvers

Chapter 25: Christophe Chalons, Jim Magiera, Christian Rohde and Maria Wiebe: A Fi...


Titel: Theory, Numerics and Applications of Hyperbolic Problems I
Untertitel: Aachen, Germany, August 2016
EAN: 9783319915456
Format: E-Book (pdf)
Hersteller: Springer International Publishing
Genre: Grundlagen
Veröffentlichung: 23.06.2018
Digitaler Kopierschutz: Wasserzeichen
Dateigrösse: 23.55 MB
Anzahl Seiten: 706

Weitere Bände aus der Buchreihe "Springer Proceedings in Mathematics & Statistics"