Willkommen, schön sind Sie da!
Logo Ex Libris

Similarity-Based Clustering

  • E-Book (pdf)
  • 203 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Similarity-based learning methods have a great potential as an intuitive and ?exible toolbox for mining, visualization,and inspec... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hier erhalten Sie Ihren Download-Link.
CHF 65.00
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

Similarity-based learning methods have a great potential as an intuitive and ?exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi?cation, prototypes, or Hebbian learning, with a large variety of di?erent, problem-adapted design choices, such as a data-optimum topology, similarity measure, or learning mode. In medicine, biology, and medical bioinformatics, more and more data arise from clinical measurements such as EEG or fMRI studies for monitoring brain activity, mass spectrometry data for the detection of proteins, peptides and composites, or microarray pro?les for the analysis of gene expressions. Typically, data are high-dimensional, noisy, and very hard to inspect using classic (e. g. , symbolic or linear) methods. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane?cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Thus, there is a need for appropriate - chine learning methods which help to automatically extract and interpret the relevant parts of this information and which, eventually, help to enable und- standingofbiologicalsystems,reliablediagnosisoffaults,andtherapyofdiseases such as cancer based on this information. Moreover, these application scenarios pose fundamental and qualitatively new challenges to the learning systems - cause of the speci?cs of the data and learning tasks. Since these characteristics are particularly pronounced within the medical domain, but not limited to it and of principled interest, this research topic opens the way toward important new directions of algorithmic design and accompanying theory.



Inhalt

I: Dynamics of Similarity-Based Clustering.- Statistical Mechanics of On-line Learning.- Some Theoretical Aspects of the Neural Gas Vector Quantizer.- Immediate Reward Reinforcement Learning for Clustering and Topology Preserving Mappings.- II: Information Representation.- Advances in Feature Selection with Mutual Information.- Unleashing Pearson Correlation for Faithful Analysis of Biomedical Data.- Median Topographic Maps for Biomedical Data Sets.- Visualization of Structured Data via Generative Probabilistic Modeling.- III: Particular Challenges in Applications.- Learning Highly Structured Manifolds: Harnessing the Power of SOMs.- Estimation of Boar Sperm Status Using Intracellular Density Distribution in Grey Level Images.- HIV-1 Drug Resistance Prediction and Therapy Optimization: A Case Study for the Application of Classification and Clustering Methods.

Produktinformationen

Titel: Similarity-Based Clustering
Untertitel: Recent Developments and Biomedical Applications
Editor:
EAN: 9783642018053
Digitaler Kopierschutz: Wasserzeichen
Format: E-Book (pdf)
Hersteller: Springer Berlin Heidelberg
Genre: Biologie
Anzahl Seiten: 203
Veröffentlichung: 14.05.2009
Dateigrösse: 11.7 MB

Weitere Bände aus der Buchreihe "Lecture Notes in Artificial Intelligence"