Willkommen, schön sind Sie da!
Logo Ex Libris

Optimized Bayesian Dynamic Advising

  • E-Book (pdf)
  • 529 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
A state-of-the-art research monograph providing consistent treatment of supervisory control, by one of the world's leading groups... Weiterlesen
CHF 230.90
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

A state-of-the-art research monograph providing consistent treatment of supervisory control, by one of the world's leading groups in the area of Bayesian identification, control, and decision making.



Klappentext

Written by one of the world's leading groups in the area of Bayesian identification, control and decision making, this book provides the theoretical and algorithmic basis of optimized probabilistic advising.
Starting from abstract ideas and formulations, and culminating in detailed algorithms, Optimized Bayesian Dynamic Advising comprises a unified treatment of an important problem of the design of advisory systems supporting supervisors of complex processes. It introduces the theoretical and algorithmic basis of developed advising, relying on novel and powerful combination black-box modeling by dynamic mixture models and fully probabilistic dynamic optimization. The proposed non-standard problem formulation and its solution mark a significant contribution to the design of anthropocentric automation systems.
Written for a broad audience, including developers of algorithms and application engineers, researchers, lecturers and postgraduates, this book can be used as a reference tool, and an advanced text on Bayesian dynamic decision making.



Inhalt
Underlying theory.- Approximate and feasible learning.- Approximate design.- Problem formulation.- Solution and principles of its approximation: learning part.- Solution and principles of its approximation: design part.- Learning with normal factors and components.- Design with normal mixtures.- Learning with Markov-chain factors and components.- Design with Markov-chain mixtures.- Sandwich BMTB for mixture initiation.- Mixed mixtures.- Applications of the advisory system.- Concluding remarks.

Produktinformationen

Titel: Optimized Bayesian Dynamic Advising
Untertitel: Theory and Algorithms
Editor:
EAN: 9781846282546
ISBN: 978-1-84628-254-6
Format: E-Book (pdf)
Hersteller: Springer London
Herausgeber: Springer
Genre: IT & Internet
Veröffentlichung: 30.03.2006
Digitaler Kopierschutz: Wasserzeichen
Dateigrösse: 3.53 MB
Anzahl Seiten: 529
Jahr: 2006

Weitere Bände aus der Buchreihe "Advanced Information and Knowledge Processing"