

Beschreibung
Nonlinear Optical Effects and Materials describes progress achieved in the field of nonlinear optics and nonlinear optical materials. Selected topics such as photorefractive materials, third-order nonlinear optical materials and organic nonlinear optical crys... Nonlinear Optical Effects and Materials describes progress achieved in the field of nonlinear optics and nonlinear optical materials. Selected topics such as photorefractive materials, third-order nonlinear optical materials and organic nonlinear optical crystals, as well as electro-optic polymers are treated. Applications of photorefractive materials in optical memories, optical processing, and guided-wave nonlinear optics in photorefractive waveguides are described.
As light will play a more and more dominant role as an information carrier, the review of existing and new materials given here makes this book quite a keystone in this area.
Klappentext
Describing progress achieved in the field of nonlinear optics and nonlinear optical materials, the Handbook treats selected topics such as photorefractive materials, third-order nonlinear optical materials and organic nonlinear optical crystals, as well as electro-optic polymers. Applications of photorefractive materials in optical memories, optical processing, and guided-wave nonlinear optics in hotorefractive waveguides are described. As light will play a more and more dominant role as an information carrier, the review of existing and new materials given here makes this a keystone book in the field.
Inhalt
1 Introduction.- References.- 2 Third-Order Nonlinear Optics in Polar Materials.- 2.1 Introduction.- 2.1.1 Motivation.- 2.1.2 Basic Concept of Cascading.- 2.1.3 Definition of Nonlinear Optical Coefficients.- 2.1.4 Materials Requirements for All-Optical Signal Processing.- 2.2 Optical Nonlinearities.- 2.2.1 Organic Nonlinear Optical Materials.- 2.2.2 Macroscopic Second-Order Nonlinear Optical Effects.- 2.2.3 Macroscopic Third-Order Nonlinear Optical Effects.- 2.3 Cascaded Second-Order Nonlinearities X(2) : X(2).- 2.3.1 Second-Harmonic Generation and Sum-Frequency Generation.- 2.3.2 Cascading Through the Reaction Field in Centrosymmetric Media.- 2.3.3 Cascading Through the Local Field.- 2.3.4 Second-Harmonic Generation and Difference Frequency Mixing.- 2.3.5 Optical Rectification and Linear Electro-Optic Effect.- 2.3.6 Limits of the Cascaded Response in Molecular Crystals.- 2.4 Nonlinear Optical Molecules.- 2.4.1 Third-Harmonic Generation.- 2.4.2 Electric Field-Induced Second-Harmonic Generation.- 2.5 Nonlinear Optical Single Crystals.- 2.5.1 Third-Harmonic Generation.- 2.5.2 z-Scan Technique.- 2.6 Discussion and Conclusion.- 2.6.1 Second- and Third-Harmonic Generation.- 2.6.2 Cascaded X(2) : X(2) for the Optical Kerr Effect.- 2.6.3 Final Remarks and Outlook.- A.l Definition of Nonlinear Optical Susceptibilities.- A.2 Conversion Between SI, cgs and Atomic Units.- A.3 Theoretical Description of Third-Harmonic Generation.- A.4 Theoretical Description of Electric Field-Induced Second-Harmonic Generation.- A.5 Theoretical Description of the z-Scan Technique.- A.6 List of Symbols and Abbreviations.- References.- 3 Second-Order Nonlinear Optical Organic Materials: Recent Developments.- 3.1 Nonlinear Optical and Electro-Optic Effects.- 3.1.1 Sum Frequency Generation and Optical Frequency Doubling.- 3.1.2 Difference Frequency Generation and Optic Parametric Oscillation/Generation.- 3.1.3 Conservation of Energy and Momentum.- 3.1.4 Linear Electro-Optic Effect.- 3.2 Material Considerations.- 3.2.1 Dispersion of the Nonlinear and Electro-Optic Coefficients.- 3.2.2 Symmetry Considerations for Second-Order Nonlinear Optical Materials.- 3.3 Organic Nonlinear Optical Molecules.- 3.3.1 Measurement Techniques.- 3.3.2 Discussion of Second-Order Nonlinear Optical Molecules.- 3.4 Nonlinear and Electro-Optic Single Crystals and Polymers.- 3.4.1 Measurement Techniques.- 3.4.2 Single Crystals.- 3.4.3 Poled Polymers.- 3.4.4 Inorganic Dielectrics and Semiconductors.- 3.5 Applications.- 3.5.1 Optical Frequency Conversion.- 3.5.2 Short-Pulse Laser Applications.- 3.5.3 Polymer-Based Electro-Optic Modulators.- 3.5.4 Electro-Optic Sampling.- 3.5.5 THz Generation.- 3.5.6 Thermo-Optic Switches.- 3.6 Stability of Nonlinear and Electro-Optic Materials and Their Properties.- 3.6.1 Optical Damage Threshold.- 3.6.2 Orientational Relaxation of Poled Polymers.- 3.7 Concluding Remarks and Outlook.- References.- 4 The Photorefractive Effect in Inorganic and Organic Materials.- 4.1 Photoinduced Changes of Optical Properties and Photorefractive Effect.- 4.2 Charge Transport in Inorganic and Organic Materials.- 4.2.1 Band Transport.- 4.2.2 Hopping Transport.- 4.2.3 Geminate Recombination.- 4.3 Model Descriptions of the Photorefractive Effect and Photoassisted Orientational Grätings.- 4.3.1 Band Model of the Photorefractive Effect.- 4.3.2 Model for the Space Charge Fields in Polymers.- 4.4 Electro-Optic Response.- 4.4.1 Pockels Effect.- 4.4.2 Lattice Distortions and Electro-Optics.- 4.4.3 Molecular Reorientation.- 4.5 Measurement Techniques.- 4.5.1 Two-Wave Mixing.- 4.5.2 Bragg Diffraction.- 4.6 Applications.- 4.6.1 Thick Volume Grätings.- 4.6.2 Thin Grätings.- 4.6.3 Materials Requirements and Figures of Merit.- 4.7 Materials.- 4.7.1 Photorefractive Materials.- 4.7.2 Polymers and Liquid Crystals Showing Photorefractive and Photoassisted Orientational Grätings.- 4.7.3 Wavelength Sensitivity.- 4.7.4 Comparison of Materials Properties.- 4.8 Conclusions.- References.- 5 Photorefractive Memories for Optical Processing.- 5.1 Volumetrie Optical Data Storage.- 5.1.1 Light Diffraction Volume Grätings.- 5.1.2 Hologram Multiplexing Methods.- 5.1.3 System Architecture.- 5.1.4 Storage Capacity of Volume Media.- 5.2 Optical Pattern Recognition.- 5.2.1 Optical Correlators.- 5.2.2 Optical Pattern Recognition Using Volume Holograms.- 5.3 Holographie Associative Memories.- 5.3.1 Linear Holographie Associative Memories.- 5.3.2 Nonlinear Holographie Associative Memories.- 5.3.3 Ring Resonator Associative Memories.- 5.4 Photorefractive Materials as Volume Storage Media.- 5.4.1 Recording Schemes.- 5.4.2 Storage Capacity of Photorefractive Holographie Media.- 5.4.3 Hologram Fixing and Nondestructive Readout.- 5.4.4 Coherent Erasure and Updating of Holograms.- 5.5 Optical Correlators Using Photorefractive Crystals.- 5.6 All-optical Nonlinear Associative Memories.- 5.6.1 Thin Storage Media Implementations.- 5.6.2 Volume Storage in Associative Memories.- 5.7 Summary.- References.- 6 Second-Harmonic Generation in Ferroelectric Waveguides.- 6.1 Second-Harmonic Generation in Waveguides: Basic Concepts.- 6.1.1 Planar and Channel Waveguides.- 6.1.2 Figures of Merit for Second-Harmonic Generation in Waveguides.- 6.1.3 Phase Matching Schemes for Second-Harmonic Generation in Waveguides.- 6.2 Ferroelectric Waveguides: Overview.- 6.3 Lithium Niobate Waveguides.- 6.3.1 Titanium-Indiffused Lithium Niobate Waveguides.- 6.3.2 Proton-Exchanged Lithium Niobate Waveguides.- 6.3.3 Domain Inversion and Quasi-Phase-Matching in Lithium Niobate.- 6.3.4 Optical Damage in Lithium Niobate Waveguides.- 6.3.5 Second-Harmonic Generation in Lithium Niobate Waveguides ..- 6.4 Lithium Tantalate Waveguides.- 6.4.1 Fabrication and Properties of Proton-Exchanged Lithium Tantalate Waveguides.- 6.4.2 Domain Inversion and Quasi-Phase-Matching in Lithium Tantalate.- 6.4.3 Second-Harmonic Generation in Lithium Tantalate Waveguides.- 6.5 Potassium Titanyl Phosphate Waveguides.- 6.5.1 Fabrication and Properties of Rubidium-Exchanged Potassium Titanyl Phosphate Waveguides.- 6.5.2 Second-Harmonic Generation in Potassium Titanyl Phosphate Waveguides.- 6.6 Potassium Niobate Waveguides.- 6.6.1 Fabrication of Ion-Implanted Waveguides in Potassium Niobate.- 6.6.2 Linear Properties of Potassium Niobate Waveguides.- 6.6.3 Power-Handling Capabilities of Potassium Niobate Waveguides.- 6.6.4 Second-Harmonic Generation in Potassium Niobate Waveguides.- 6.7 Discussion and Concluding Remarks.- References.
