

Beschreibung
This two-volume treatise, the collected effort of more than 50 authors, represents the first comprehensive survey of the chemistry and biology of the set of molecules known as peptide growth factors. Although there have been many symposia on this topic, and n...This two-volume treatise, the collected effort of more than 50 authors, represents the first comprehensive survey of the chemistry and biology of the set of molecules known as peptide growth factors. Although there have been many symposia on this topic, and numerous publications of reviews dealing with selected subsets of growth factors, the entired field has never been covered in a single treatise. It is essential to do this at the present time, as the number of journal articles on peptide growth factors now makes it almost im anyone person to stay informed on this subject by reading the possible for At the same time it is becoming increasingly apparent that primary literature. these substances are of universal importance in biology and medicine and that the original classification of these molecules, based on the laboratory setting of their discovery, as "growth factors," "lymphokines," "cytokines," or "colony-stimulating factors," was quite artifactual; they are in fact the basis of a common language for intercellular communication. As a set they affect es sentially every cell in the body, and in this regard they provide the basis to develop a unified science of cell biology, germane to all of biomedical research.
Inhalt
Section B: Individual Growth Factors and Their Receptors (Cont'd from Part I).- 19 Interferons.- A. What Are Interferons?.- B. Structure of Interferon Genes and Proteins.- I. Interferon-?/? (Type I IFN).- 1. Human IFN-?/? Genes and Proteins.- 2. IFN-?/? Genes and Proteins of Other Animal Species.- II. Interferon-? (Type II IFN).- C. Interferon Induction and Production.- I. Production of IFN-?/?.- II. Molecular Mechanisms of IFN-?/? Induction.- III. IFN-? Induction.- D. Interferon Receptors.- I. IFN-?/? Receptor.- II. IFN-? Receptor.- E. Interferon Actions.- I. Molecular Mechanisms.- 1. Proteins Induced by the Interferons.- 2. Mechanisms of Gene Activation by Interferons.- 3. Common Mechanisms of Gene Activation by Interferons, Viruses, Double-Stranded RNA, Growth Factors, and Cytokines.- II. Spectrum of Biological Activities.- 1. Inhibition of Cell Growth.- 2. Stimulation of Cell Growth.- 3. Other Biological Activities.- 4. Possible Physiological Roles.- 5. Roles in Pathophysiology and Therapeutic Applications.- References.- 20 Cachectin/Tumor Necrosis Factor and Lymphotoxin.- A. Introduction.- B. "Factor-Mediated" Diseases: The Hematopoietic Origin of Factors.- C. Cachectin.- D. Tumor Necrosis Factor.- E. Physical Structure of Cachectin/TNF: Homology to Lymphotoxin.- F. Cachectin/TNF and Lymphotoxin: Production Sources, Kinetics, and Stimuli.- G. Control of Cachectin Gene Expression.- H. Cachectin/TNF Receptor and Postreceptor Mechanisms.- J. Biological Effects of Cachectin/TNF and Lymphotoxin: In Vivo and In Vitro.- I. Adipose Tissue.- II. Muscle.- III. Liver.- IV. Gastrointestinal Tract.- V. Central Nervous System.- VI. Adrenal.- VII. Skin.- VIII. Bone and Cartilage.- IX. Vascular Endothelium.- X. Hematopoietic Elements.- 1. Neutrophils.- 2. Eosinophils.- 3. Monocyte/Macrophages.- 4. Lymphocytes.- K. Gross Physiologic and Pathologic Consequences of Cachectin/TNF Production or Administration.- L. Disease States Associated with Elevated Levels of Cachectin/TNF.- M. Cachectin/TNF and Its Clinical Applications: To Be or Not To Be.- References.- 21 Bombesin and Gastrin-Releasing Peptide: Neuropeptides, Secretogogues, and Growth Factors.- A. Introduction.- B. Structure and Cellular Localization of the Peptides.- I. Bombesin-Related Peptides.- II. Structure of Bombesin and GRP.- III. Molecular Forms of GRP.- IV. Cellular Localization of GRP.- 1. Neuronal GRP.- 2. Neuroendocrine GRP.- C. Molecular Genetics of the Prepro-GRP Gene.- I. The Human Prepro-GRP Gene.- 1. Structure.- 2. Expression.- 3. Regulation.- II. Rat Prepro-GRP Gene.- 1. Structure.- 2. Expression.- III. Human Pro-GRP-Derived Peptides.- 1. Posttranslational Processing.- 2. Expression.- D. Pharmacological Effects of Bombesin and GRP.- I. Effects Unrelated to Growth.- 1. In Vivo Effects.- 2. In Vitro Effects on Isolated Organs.- 3. Direct Effects and Cellular Distribution of Receptors.- 4. Induced Release of Endogenous GRP.- II. Effect on Growth.- 1. In Vitro Studies.- 2. In Vivo Studies.- E. Cellular Responses to Bombesin and GRP.- I. Introduction to Bombesin-Mediated Signal Transduction.- II. Bombesin Binding to Cells/Membranes: Definition of the Bombesin Receptor.- III. Desensitization/Internalization of the Receptor.- IV. Phospholipase Activation.- V. Guanine Nucleotide-Binding Protein/Bombesin Receptor Interaction.- VI. Ion Fluxes.- VII. Protein Phosphorylation.- VIII. Bombesin Receptor Antagonists.- IX. Consequences of Bombesin-Evoked Second Messenger Production.- 1. Secretion.- 2. Receptor Transmodulation.- 3. Protooncogene Expression.- 4. DNA Synthesis.- F. Conclusions.- References.- 22 Platelet-Derived Endothelial Cell Growth Factor.- A. Introduction.- B. Purification and Biochemical Characterization of PD-ECGF.- I. Purification of PD-ECGF.- II. Structural Properties of PD-ECGF.- C. Primary Sequence of PD-ECGF.- D. Biological Activities of PD-ECGF.- I. In Vitro Effects of PD-ECGF.- II. In Vivo Effects of PD-ECGF.- E. Conclusion.- References.- 23 Nerve Growth Factor.- A. Introduction.- B. Nerve Growth Factor Gene Structure.- I. Nerve Growth Factor Protein Complex.- II. Gene Structure.- III. Nerve Growth Factor Gene Promoter.- IV. Amino Acid Sequence.- V. Expression of Cloned NGF.- VI. The ?- and ?-Subunits.- C. In Vivo Expression of NGF.- D. Mechanism of Signal Transduction.- I. Second Messengers.- II. Role of Oncogenes.- III. Genes Induced by NGF.- 1. Early Response Genes.- 2. Later Responses.- E. Receptor for NGF.- I. Biochemical Analysis.- II. Cloning of the NGF Receptor Gene.- III. Features of the NGF Receptor Gene.- IV. Kinetic Forms of the NGF Receptor.- V. Expression of Cloned NGF Receptors.- F. Conclusions.- References.- 24 A Glia-Derived Nexin Acting as a Neurite-Promoting Factor.- A. Introduction.- B. A Glia-Derived Neurite-Promoting Factor Acting as a Protease Inhibitor.- I. Biochemical Properties.- II. Molecular Cloning.- III. Characteristics of the Primary Structures.- IV. Biological Effects.- V. Localization of Glia-Derived Nexin.- VI. Glia-Derived Nexin, a Representative of a New Family of Neurite-Promoting Factors?.- VII. Mode of Action of GDN?.- VIII. In Vivo Relevance of the Balance Between Proteases and Protease Inhibitors for Neurite Outgrowth?.- C. Conclusion.- References.- 25 Mullerian Inhibiting Substance.- A. Introduction.- B. Structure of MIS.- I. Bovine and Chicken MIS Proteins.- II. Bovine and Human MIS Genes.- III. Biosynthesis of Human MIS in CHO Cells.- C. MIS as a Member of the TGF-? Family.- I. Structural Properties of the Family.- II. Proteolytic Processing of Human MIS.- D. MIS Expression During Development.- I. Upstream Regions of the Bovine and Human MIS Genes.- II. Expression of MIS in the Testis.- III. Expression of MIS in the Ovary.- E. Mechanism of Action.- I. MIS Receptor and Mullerian Duct Regression.- II. Modulators of MIS Action and Mullerian Duct Regression.- F. Potential Activities of MIS.- I. Descent of the Testis.- II. Fetal Lung Development.- III. Antiproliferative Effects of MIS.- G. Summary.- References.- 26 The Inhibin/Activin Family of Hormones and Growth Factors.- A. Chemical Characterization of Inhibins and Activins.- I. Inhibin.- II. Activin.- B. Actions of Inhibin and Activin on the Anterior Pituitary.- C. Development of Antisera Toward Inhibin Subunits.- D. Gonadal Production of Inhibin.- I. Granulosa Cells.- II. Sertoli Cells.- E. Intragonadal Actions of Inhibin and Activin.- I. Paracrine Regulation.- II. Autocrine Regulation.- F. Role of Inhibin in Regulation of FSH Secretion In Vivo.- I. Female Rat.- II. Male Rat.- G. Tissue Expression of Inhibin Subunits.- H. Inhibin and Activin in the Placenta.- I. Activin and the Control of Oxytocin Secretion.- J. Roles of Activin and Inhibin in Eryt…
