Willkommen, schön sind Sie da!
Logo Ex Libris

Machine Learning for Medical Image Reconstruction

  • E-Book (pdf)
  • 163 Seiten
(0) Erste Bewertung abgeben
Alle Bewertungen ansehen
This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hiererhalten Sie Ihren Download-Link.
CHF 59.90
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich


This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually.

The 15 papers presented were carefully reviewed and selected from 18 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.


Deep Learning for Magnetic Resonance Imaging.- 3D FLAT: Feasible Learned Acquisition Trajectories for Accelerated MRI.- Deep Parallel MRI Reconstruction Network Without Coil Sensitivities.- Neural Network-based Reconstruction in Compressed Sensing MRI Without Fully-sampled Training Data.- Deep Recurrent Partial Fourier Reconstruction in Diffusion MRI.- Model-based Learning for Quantitative Susceptibility Mapping.- Learning Bloch Simulations for MR Fingerprinting by Invertible Neural Networks.- Weakly-supervised Learning for Single-step Quantitative Susceptibility Mapping.- Data-Consistency in Latent Space and Online Update Strategy to Guide GAN for Fast MRI Reconstruction.- Extending LOUPE for K-space Under-sampling Pattern Optimization in Multi-coil MRI.- AutoSyncoder: An Adversarial AutoEncoder Framework for Multimodal MRI Synthesis.- Deep Learning for General Image Reconstruction.- A deep prior approach to magnetic particle imaging.- End-To-End Convolutional Neural Network for 3D Reconstruction of Knee Bones From Bi-Planar X-Ray Images.- Cellular/Vascular Reconstruction using a Deep CNN for Semantic Image Preprocessing and Explicit Segmentation.- Improving PET-CT Image Segmentation via Deep Multi-Modality Data Augmentation.- Stain Style Transfer of Histopathology Images Via Structure-Preserved Generative Learning.


Titel: Machine Learning for Medical Image Reconstruction
Untertitel: Third International Workshop, MLMIR 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings
EAN: 9783030615987
Format: E-Book (pdf)
Hersteller: Springer International Publishing
Genre: IT & Internet
Veröffentlichung: 21.10.2020
Digitaler Kopierschutz: Wasserzeichen
Dateigrösse: 35.84 MB
Anzahl Seiten: 163

Weitere Bände aus der Buchreihe "Lecture Notes in Computer Science"