Willkommen, schön sind Sie da!
Logo Ex Libris

Temporal Modelling of Customer Behaviour

  • E-Book (pdf)
  • 123 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
This book describes advanced machine learning models - such as temporal collaborative filtering, stochastic models and Bayesian no... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hier erhalten Sie Ihren Download-Link.
CHF 165.50
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

This book describes advanced machine learning models - such as temporal collaborative filtering, stochastic models and Bayesian nonparametrics - for analysing customer behaviour. It shows how they are used to track changes in customer behaviour, monitor the evolution of customer groups, and detect various factors, such as seasonal effects and preference drifts, that may influence customers' purchasing behaviour. In addition, the book presents four case studies conducted with data from a supermarket health program in which the customers were segmented and the impact of promotional activities on different segments was evaluated. The outcomes confirm that the models developed here can be used to effectively analyse dynamic behaviour and increase customer engagement. Importantly, the methods introduced here can also be used to analyse other types of behavioural data such as activities on social networks, and educational systems.




Klappentext
This book describes advanced machine learning models such as temporal collaborative filtering, stochastic models and Bayesian nonparametrics for analysing customer behaviour. It shows how they are used to track changes in customer behaviour, monitor the evolution of customer groups, and detect various factors, such as seasonal effects and preference drifts, that may influence customers' purchasing behaviour. In addition, the book presents four case studies conducted with data from a supermarket health program in which the customers were segmented and the impact of promotional activities on different segments was evaluated. The outcomes confirm that the models developed here can be used to effectively analyse dynamic behaviour and increase customer engagement. Importantly, the methods introduced here can also be used to analyse other types of behavioural data such as activities on social networks, and educational systems.



Inhalt
Introduction.- Datasets .- Literature Review .- Tracking Purchase Behaviour Change.- Discovering Purchase Behaviour Patterns .-  Evaluating Impact of the Web-based Health Program .- Tracking the Evolution of Customer Segmentations .- Conclusions and Future Work. 

Produktinformationen

Titel: Temporal Modelling of Customer Behaviour
Autor:
EAN: 9783030182892
Digitaler Kopierschutz: Wasserzeichen
Format: E-Book (pdf)
Hersteller: Springer-Verlag GmbH
Genre: Technik
Anzahl Seiten: 123
Veröffentlichung: 27.04.2019
Dateigrösse: 3.6 MB

Weitere Bände aus der Buchreihe "Springer Theses"