Willkommen, schön sind Sie da!
Logo Ex Libris

Intersection Homology & Perverse Sheaves

  • E-Book (pdf)
  • 270 Seiten
(0) Erste Bewertung abgeben
Alle Bewertungen ansehen
This textbook provides a gentle introduction to intersection homology and perverse sheaves, where concrete examples and geometric... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hier erhalten Sie Ihren Download-Link.
CHF 71.00
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich


This textbook provides a gentle introduction to intersection homology and perverse sheaves, where concrete examples and geometric applications motivate concepts throughout. By giving a taste of the main ideas in the field, the author welcomes new readers to this exciting area at the crossroads of topology, algebraic geometry, analysis, and differential equations. Those looking to delve further into the abstract theory will find ample references to facilitate navigation of both classic and recent literature.

Beginning with an introduction to intersection homology from a geometric and topological viewpoint, the text goes on to develop the sheaf-theoretical perspective. Then algebraic geometry comes to the fore: a brief discussion of constructibility opens onto an in-depth exploration of perverse sheaves. Highlights from the following chapters include a detailed account of the proof of the Beilinson-Bernstein-Deligne-Gabber (BBDG) decomposition theorem, applications of perverse sheaves to hypersurface singularities, and a discussion of Hodge-theoretic aspects of intersection homology via Saito's deep theory of mixed Hodge modules. An epilogue offers a succinct summary of the literature surrounding some recent applications.

Intersection Homology & Perverse Sheaves is suitable for graduate students with a basic background in topology and algebraic geometry. By building context and familiarity with examples, the text offers an ideal starting point for those entering the field. This classroom-tested approach opens the door to further study and to current research.


Laurentiu G. Maxim is Professor of Mathematics at University of Wisconsin-Madison and a Researcher at the Institute of Mathematics of the Romanian Academy. His research interests lie at the interface of geometric topology and algebraic geometry, with an emphasis on the topological study of complex algebraic varieties. He has taught courses on intersection homology, perverse sheaves and their applications to singularity theory in the United States, Romania, Mainland China, and Hong Kong SAR.


Preface.- 1. Topology of singular spaces: motivation, overview.- 2. Intersection Homology: definition, properties.- 3. L-classes of stratified spaces.- 4. Brief introduction to sheaf theory.- 5. Poincaré-Verdier Duality.- 6. Intersection homology after Deligne.- 7. Constructibility in algebraic geometry.- 8. Perverse sheaves.- 9. The Decomposition Package and Applications.- 10. Hypersurface singularities. Nearby and vanishing cycles.- 11. Overview of Saito's mixed Hodge modules, and immediate applications.- 12. Epilogue.- Bibliography.- Index.


Titel: Intersection Homology & Perverse Sheaves
Untertitel: with Applications to Singularities
EAN: 9783030276447
Digitaler Kopierschutz: Wasserzeichen
Format: E-Book (pdf)
Hersteller: Springer-Verlag GmbH
Genre: Grundlagen
Anzahl Seiten: 270
Veröffentlichung: 30.11.2019
Dateigrösse: 3.8 MB