Willkommen, schön sind Sie da!
Logo Ex Libris

How We Understand Mathematics

  • E-Book (pdf)
  • 118 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
This volume examines mathematics as a product of the human mind and analyzes the language of "pure mathematics" from various adva... Weiterlesen
CHF 82.90
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

This volume examines mathematics as a product of the human mind and analyzes the language of "pure mathematics" from various advanced-level sources. Through analysis of the foundational texts of mathematics, it is demonstrated that math is a complex literary creation, containing objects, actors, actions, projection, prediction, planning, explanation, evaluation, roles, image schemas, metonymy, conceptual blending, and, of course, (natural) language. The book follows the narrative of mathematics in a typical order of presentation for a standard university-level algebra course, beginning with analysis of set theory and mappings and continuing along a path of increasing complexity. At each stage, primary concepts, axioms, definitions, and proofs will be examined in an effort to unfold the tell-tale traces of the basic human cognitive patterns of story and conceptual blending.

This book will be of interest to mathematicians, teachers of mathematics, cognitive scientists, cognitive linguists, and anyone interested in the engaging question of how mathematics works and why it works so well.



Inhalt
1. Introduction.- 2. The Theoretical Framework and the Subject of Study.- 3. Sets.- 4. Mappings.- 5. Groups.- 6. Rings, Fields, and Vector Spaces.- 7. Summary and Conclusion.- Sources. 

Produktinformationen

Titel: How We Understand Mathematics
Untertitel: Conceptual Integration in the Language of Mathematical Description
Autor:
EAN: 9783319776880
Format: E-Book (pdf)
Hersteller: Springer International Publishing
Genre: Grundlagen
Veröffentlichung: 25.04.2018
Digitaler Kopierschutz: Wasserzeichen
Dateigrösse: 2.08 MB
Anzahl Seiten: 118