Geben Sie Ihre E-Mail-Adresse oder Handynummer ein und Sie erhalten einen direkten Link, um die kostenlose Reader-App herunterzuladen.
Die Ex Libris-Reader-App ist für iOS und Android erhältlich. Weitere Informationen zu unseren Apps finden Sie hier.
Extract accurate information from data to train and improve machine learning models using NumPy, SciPy, pandas, and scikit-learn librariesKey FeaturesDiscover solutions for feature generation, feature extraction, and feature selectionUncover the end-to-end feature engineering process across continuous, discrete, and unstructured datasetsImplement modern feature extraction techniques using Python's pandas, scikit-learn, SciPy and NumPy librariesBook DescriptionFeature engineering is invaluable for developing and enriching your machine learning models. In this cookbook, you will work with the best tools to streamline your feature engineering pipelines and techniques and simplify and improve the quality of your code.Using Python libraries such as pandas, scikit-learn, Featuretools, and Feature-engine, you'll learn how to work with both continuous and discrete datasets and be able to transform features from unstructured datasets. You will develop the skills necessary to select the best features as well as the most suitable extraction techniques. This book will cover Python recipes that will help you automate feature engineering to simplify complex processes. You'll also get to grips with different feature engineering strategies, such as the box-cox transform, power transform, and log transform across machine learning, reinforcement learning, and natural language processing (NLP) domains.By the end of this book, you'll have discovered tips and practical solutions to all of your feature engineering problems.What you will learnSimplify your feature engineering pipelines with powerful Python packagesGet to grips with imputing missing valuesEncode categorical variables with a wide set of techniquesExtract insights from text quickly and effortlesslyDevelop features from transactional data and time series dataDerive new features by combining existing variablesUnderstand how to transform, discretize, and scale your variablesCreate informative variables from date and timeWho this book is forThis book is for machine learning professionals, AI engineers, data scientists, and NLP and reinforcement learning engineers who want to optimize and enrich their machine learning models with the best features. Knowledge of machine learning and Python coding will assist you with understanding the concepts covered in this book.
Titel: | Python Feature Engineering Cookbook |
Untertitel: | Over 70 recipes for creating, engineering, and transforming features to build machine learning models |
Autor: | |
EAN: | 9781789807820 |
Digitaler Kopierschutz: | Adobe-DRM |
Format: | E-Book (epub) |
Hersteller: | Packt Publishing |
Anzahl Seiten: | 372 |
Veröffentlichung: | 22.01.2020 |
Dateigrösse: | 5.6 MB |
Sie haben bereits bei einem früheren Besuch Artikel in Ihren Warenkorb gelegt. Ihr Warenkorb wurde nun mit diesen Artikeln ergänzt. |