Willkommen, schön sind Sie da!
Logo Ex Libris

Discovery Science

  • E-Book (pdf)
  • 706 Seiten
(0) Erste Bewertung abgeben
Alle Bewertungen ansehen
This book constitutes the proceedings of the 23rd International Conference on Discovery Science, DS 2020, which took place during... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hiererhalten Sie Ihren Download-Link.
CHF 94.90
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich


This book constitutes the proceedings of the 23rd International Conference on Discovery Science, DS 2020, which took place during October 19-21, 2020. The conference was planned to take place in Thessaloniki, Greece, but had to change to an online format due to the COVID-19 pandemic.

The 26 full and 19 short papers presented in this volume were carefully reviewed and selected from 76 submissions. The contributions were organized in topical sections named: classification; clustering; data and knowledge representation; data streams; distributed processing; ensembles; explainable and interpretable machine learning; graph and network mining; multi-target models; neural networks and deep learning; and spatial, temporal and spatiotemporal data.


Classification.- Evaluating Decision Makers over Selectively Labelled Data: A Causal Modelling Approach.- Mitigating Discrimination in Clinical Machine Learning Decision Support using Algorithmic Processing Techniques.- WeakAL: Combining Active Learning and Weak Supervision.- Clustering.- Constrained Clustering via Post-Processing.- Deep Convolutional Embedding for Painting Clustering: Case Study on Picasso's Artworks.- Dynamic Incremental Semi-Supervised Fuzzy Clustering for Bipolar Disorder Episode Prediction.- Iterative Multi-Mode Discretization: Applications to Co-Clustering.- Data and Knowledge Representation.- COVID-19 Therapy Target Discovery with Context-aware Literature Mining.- Semantic Annotation of Predictive Modelling Experiments.- Semantic Description of Data Mining Datasets: An Ontology-based Annotation Schema.- Data Streams.- FABBOO - Online Fairness-aware Learning under Class Imbalance.- FEAT: A Fairness-enhancing and Concept-adapting Decision Tree Classifer.- Unsupervised Concept Drift Detection using a Student{Teacher Approach.- Dimensionality Reduction and Feature Selection.- Assembled Feature Selection For Credit Scoring in Micro nance With Non-Traditional Features.- Learning Surrogates of a Radiative Transfer Model for the Sentinel 5P Satellite.- Nets versus Trees for Feature Ranking and Gene Network Inference.- Pathway Activity Score Learning Algorithm for Dimensionality Reduction of Gene Expression Data.- Machine learning for Modelling and Understanding in Earth Sciences.- Distributed Processing.- Balancing between Scalability and Accuracy in Time-Series Classification for Stream and Batch Settings.- DeCStor: A Framework for Privately and Securely Sharing Files Using a Public Blockchain.- Investigating Parallelization of MAML.- Ensembles.- Extreme Algorithm Selection with Dyadic Feature Representation.- Federated Ensemble Regression using Classification.- One-Class Ensembles for Rare Genomic Sequences Identification.- Explainable and Interpretable Machine Learning.- Explaining Sentiment Classi cation with Synthetic Exemplars and Counter-Exemplars.- Generating Explainable and Effective Data Descriptors Using Relational Learning: Application to Cancer Biology.- Interpretable Machine Learning with Bitonic Generalized Additive Models and Automatic Feature Construction.- Predicting and Explaining Privacy Risk Exposure in Mobility Data.- Graph and Network Mining.- Maximizing Network Coverage Under the Presence of Time Constraint by Injecting Most Effective k-Links.- On the Utilization of Structural and Textual Information of a Scientific Knowledge Graph to Discover Future Research Collaborations: a Link Prediction Perspective.- Simultaneous Process Drift Detection and Characterization with Pattern-based Change Detectors.- Multi-Target Models.- Extreme Gradient Boosted Multi-label Trees for Dynamic Classifier Chains.- Hierarchy Decomposition Pipeline: A Toolbox for Comparison of Model Induction Algorithms on Hierarchical Multi-label Classification Problems.- Missing Value Imputation with MERCS: a Faster Alternative to MissForest.- Multi-Directional Rule Set Learning.- On Aggregation in Ensembles of Multilabel Classifiers.- Neural Networks and Deep Learning.- Attention in Recurrent Neural Networks for Energy Disaggregation.- Enhanced Food Safety Through Deep Learning for Food Recalls Prediction.- Machine learning for Modelling and Understanding in Earth Sciences.- FairNN - Conjoint Learning of Fair Representations for Fair Decisions.- Improving Deep Unsupervised Anomaly Detection by Exploiting VAE Latent Space Distribution.- Spatial, Temporal and Spatiotemporal Data.- Detecting Temporal Anomalies in Business Processes using Distance-based Methods.- Mining Constrained Regions of Interest: An Optimization Approach.- Mining Disjoint Sequential Pattern Pairs from Tourist Trajectory Data.- Predicting the Health Condition of mHealth App Users with Large Differences in the Amount of Recorded Observations - Where to Learn from.- Spatiotemporal Traffic Anomaly Detection on Urban Road Network Using Tensor Decomposition Method.- Time Series Regression in Professional Road Cycling.


Titel: Discovery Science
Untertitel: 23rd International Conference, DS 2020, Thessaloniki, Greece, October 19-21, 2020, Proceedings
EAN: 9783030615277
Format: E-Book (pdf)
Hersteller: Springer International Publishing
Genre: IT & Internet
Veröffentlichung: 14.10.2020
Digitaler Kopierschutz: Wasserzeichen
Dateigrösse: 50.2 MB
Anzahl Seiten: 706

Weitere Bände aus der Buchreihe "Lecture Notes in Computer Science"

Band 12323
Sie sind hier.