Willkommen, schön sind Sie da!
Logo Ex Libris

Data Mining: Foundations and Intelligent Paradigms

  • E-Book (pdf)
  • 336 Seiten
(0) Erste Bewertung abgeben
Alle Bewertungen ansehen
There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled 'DATA... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hier erhalten Sie Ihren Download-Link.
CHF 178.90
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.


There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled 'DATA MINING: Foundations and Intelligent Paradigms: Volume 1: Clustering, Association and Classification' we wish to introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field.



Data mining is one of the most rapidly growing research areas in computer science and statistics. In Volume 1of this three volume series, we have brought together contributions from some of the most prestigious researchers in the fundamental data mining tasks of clustering, association and classification. Each of the chapters is self contained. Theoreticians and applied scientists/ engineers will find this volume valuable. Additionally, it provides a sourcebook for graduate students interested in the current direction of research in these aspects of data mining.

Introductory Chapter.- Clustering Analysis in Large Graphs with Rich Attributes.- Temporal Data Mining: Similarity-Profiled Association Pattern.- Bayesian Networks with Imprecise Probabilities: Theory and Application to Classification.- Hierarchical Clustering for Finding Symmetries and Other Patterns in Massive, High Dimensional Datasets.- Randomized Algorithm of Finding the True Number of Clusters Based on Chebychev Polynomial Approximation.- Bregman Bubble Clustering: A Robust Framework for Mining Dense Clusters.- DepMiner: A method and a system for the extraction of significant dependencies.- Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries.- Text Clustering with Named Entities: A Model, Experimentation and Realization.- Regional Association Rule Mining and Scoping from Spatial Data.- Learning from Imbalanced Data: Evaluation Matters.


Titel: Data Mining: Foundations and Intelligent Paradigms
Untertitel: Volume 1: Clustering, Association and Classification
EAN: 9783642231667
ISBN: 978-3-642-23166-7
Digitaler Kopierschutz: Wasserzeichen
Format: E-Book (pdf)
Herausgeber: Springer
Genre: Technik
Anzahl Seiten: 336
Veröffentlichung: 09.11.2011
Jahr: 2011
Untertitel: Englisch
Dateigrösse: 6.3 MB