Willkommen, schön sind Sie da!
Logo Ex Libris

Algorithmic Learning Theory

  • E-Book (pdf)
  • 320 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
This book constitutes the refereed proceedings of the 14th International Conference on Algorithmic Learning Theory, ALT 2003, hel... Weiterlesen
CHF 82.50
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

This book constitutes the refereed proceedings of the 14th International Conference on Algorithmic Learning Theory, ALT 2003, held in Sapporo, Japan in October 2003. The 19 revised full papers presented together with 2 invited papers and abstracts of 3 invited talks were carefully reviewed and selected from 37 submissions. The papers are organized in topical sections on inductive inference, learning and information extraction, learning with queries, learning with non-linear optimization, learning from random examples, and online prediction.



Inhalt

Invited Papers.- Abduction and the Dualization Problem.- Signal Extraction and Knowledge Discovery Based on Statistical Modeling.- Association Computation for Information Access.- Efficient Data Representations That Preserve Information.- Can Learning in the Limit Be Done Efficiently?.- Inductive Inference.- Intrinsic Complexity of Uniform Learning.- On Ordinal VC-Dimension and Some Notions of Complexity.- Learning of Erasing Primitive Formal Systems from Positive Examples.- Changing the Inference Type - Keeping the Hypothesis Space.- Learning and Information Extraction.- Robust Inference of Relevant Attributes.- Efficient Learning of Ordered and Unordered Tree Patterns with Contractible Variables.- Learning with Queries.- On the Learnability of Erasing Pattern Languages in the Query Model.- Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries.- Learning with Non-linear Optimization.- Kernel Trick Embedded Gaussian Mixture Model.- Efficiently Learning the Metric with Side-Information.- Learning Continuous Latent Variable Models with Bregman Divergences.- A Stochastic Gradient Descent Algorithm for Structural Risk Minimisation.- Learning from Random Examples.- On the Complexity of Training a Single Perceptron with Programmable Synaptic Delays.- Learning a Subclass of Regular Patterns in Polynomial Time.- Identification with Probability One of Stochastic Deterministic Linear Languages.- Online Prediction.- Criterion of Calibration for Transductive Confidence Machine with Limited Feedback.- Well-Calibrated Predictions from Online Compression Models.- Transductive Confidence Machine Is Universal.- On the Existence and Convergence of Computable Universal Priors.

Produktinformationen

Titel: Algorithmic Learning Theory
Untertitel: 14th International Conference, ALT 2003, Sapporo, Japan, October 17-19, 2003, Proceedings
Editor:
EAN: 9783540396246
Format: E-Book (pdf)
Hersteller: Springer Berlin Heidelberg
Genre: IT & Internet
Veröffentlichung: 02.10.2003
Digitaler Kopierschutz: Wasserzeichen
Anzahl Seiten: 320

Weitere Bände aus der Buchreihe "Lecture Notes in Computer Science"