Willkommen, schön sind Sie da!
Logo Ex Libris

Algorithmic Learning Theory

  • E-Book (pdf)
  • 514 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable intera... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hiererhalten Sie Ihren Download-Link.
CHF 133.50
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical ?elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the ?eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re?ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the ?eld, placing each of these topics in the general context of the ?eld. Formal models of automated learning re?ect various facets of the wide range of activities that can be viewed as learning. A ?rst dichotomy is between viewing learning as an inde?nite process and viewing it as a ?nite activity with a de?ned termination. Inductive Inference models focus on inde?nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion.



Inhalt

Invited Papers.- String Pattern Discovery.- Applications of Regularized Least Squares to Classification Problems.- Probabilistic Inductive Logic Programming.- Hidden Markov Modelling Techniques for Haplotype Analysis.- Learning, Logic, and Probability: A Unified View.- Regular Contributions.- Learning Languages from Positive Data and Negative Counterexamples.- Inductive Inference of Term Rewriting Systems from Positive Data.- On the Data Consumption Benefits of Accepting Increased Uncertainty.- Comparison of Query Learning and Gold-Style Learning in Dependence of the Hypothesis Space.- Learning r-of-k Functions by Boosting.- Boosting Based on Divide and Merge.- Learning Boolean Functions in AC 0 on Attribute and Classification Noise.- Decision Trees: More Theoretical Justification for Practical Algorithms.- Application of Classical Nonparametric Predictors to Learning Conditionally I.I.D. Data.- Complexity of Pattern Classes and Lipschitz Property.- On Kernels, Margins, and Low-Dimensional Mappings.- Estimation of the Data Region Using Extreme-Value Distributions.- Maximum Entropy Principle in Non-ordered Setting.- Universal Convergence of Semimeasures on Individual Random Sequences.- A Criterion for the Existence of Predictive Complexity for Binary Games.- Full Information Game with Gains and Losses.- Prediction with Expert Advice by Following the Perturbed Leader for General Weights.- On the Convergence Speed of MDL Predictions for Bernoulli Sequences.- Relative Loss Bounds and Polynomial-Time Predictions for the k-lms-net Algorithm.- On the Complexity of Working Set Selection.- Convergence of a Generalized Gradient Selection Approach for the Decomposition Method.- Newton Diagram and Stochastic Complexity in Mixture of Binomial Distributions.- Learnability of Relatively Quantified Generalized Formulas.- Learning Languages Generated by Elementary Formal Systems and Its Application to SH Languages.- New Revision Algorithms.- The Subsumption Lattice and Query Learning.- Learning of Ordered Tree Languages with Height-Bounded Variables Using Queries.- Learning Tree Languages from Positive Examples and Membership Queries.- Learning Content Sequencing in an Educational Environment According to Student Needs.- Tutorial Papers.- Statistical Learning in Digital Wireless Communications.- A BP-Based Algorithm for Performing Bayesian Inference in Large Perceptron-Type Networks.- Approximate Inference in Probabilistic Models.

Produktinformationen

Titel: Algorithmic Learning Theory
Untertitel: 15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004. Proceedings
Editor:
EAN: 9783540302155
Format: E-Book (pdf)
Hersteller: Springer Berlin Heidelberg
Genre: IT & Internet
Veröffentlichung: 24.09.2004
Digitaler Kopierschutz: Wasserzeichen
Dateigrösse: 4.79 MB
Anzahl Seiten: 514

Weitere Bände aus der Buchreihe "Lecture Notes in Artificial Intelligence"