2. Adventsüberraschung: 30% Rabatt auf Bücher (DE)! Mehr erfahren.
Willkommen, schön sind Sie da!
Logo Ex Libris

Data Science - was ist das eigentlich?!

  • E-Book (pdf)
  • 179 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Sie möchten endlich wissen, was sich hinter Schlagworten wie 'Data Science' und 'Machine Learning' eigent... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hier erhalten Sie Ihren Download-Link.
CHF 7.90
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.

Beschreibung

Sie möchten endlich wissen, was sich hinter Schlagworten wie 'Data Science' und 'Machine Learning' eigentlich verbirgt - und was man alles damit anstellen kann? Auf allzu viel Mathematik würden Sie dabei aber gern verzichten? Dann sind Sie hier genau richtig: Dieses Buch bietet einen kompakten Einblick in die wichtigsten Schlüsselkonzepte der Datenwissenschaft und ihrer Algorithmen - und zwar ohne Sie mit mathematischen Formeln und Details zu belasten!

Der Fokus liegt - nach einer übergeordneten Einführung - auf Anwendungen des maschinellen Lernens zur Mustererkennung und Vorhersage von Ergebnissen: In jedem Kapitel wird ein Algorithmus erläutert und mit einem leicht verständlichen, realen Anwendungsbeispiel verknüpft. Die Kombination aus intuitiven Erklärungen und zahlreichen Abbildungen ermöglicht dabei ein grundlegendes Verständnis, das ohne mathematische Formelsprache auskommt. Abschließend werden auch die Grenzen und Nachteile der betrachteten Algorithmen explizit aufgezeigt. 



Annalyn Ng schloss ihr Grundstudium an der University of Michigan (Ann Arbor) ab und war dort auch als Statistiktutorin tätig. Anschließend absolvierte sie ihr Master-Studium am Psychometrics Centre der University of Cambridge, indem Sie dort Social Media-Daten für gezielte Werbung und programmierte kognitive Tests für die Stellenv .ermittlung auswertete. Im Team für Verhaltenswissenschaften bei Disney Research untersuchte sie später psychologische Profile von Konsumenten.

Kenneth Soo hat sein Master-Studium in Statistik an der Stanford University abgeschlossen. Zuvor absolvierte er sein Grundstudium in Mathematik, Operational Research, Statistics and Economics (MORSE) an der University of Warwick: Er war dort als Forschungsassistent bei der Operational Research & Management Sciences Group tätig und arbeitete an der bi-objektiven robusten Optimierung mit Anwendungen in Netzwerken, die zufälligen Ausfällen unterliegen.



Autorentext

Annalyn Ng schloss ihr Grundstudium an der University of Michigan (Ann Arbor) ab und war dort auch als Statistiktutorin tätig. Anschließend absolvierte sie ihr Master-Studium am Psychometrics Centre der University of Cambridge, indem Sie dort Social Media-Daten für gezielte Werbung und programmierte kognitive Tests für die Stellenv .ermittlung auswertete. Im Team für Verhaltenswissenschaften bei Disney Research untersuchte sie später psychologische Profile von Konsumenten.

Kenneth Soo hat sein Master-Studium in Statistik an der Stanford University abgeschlossen. Zuvor absolvierte er sein Grundstudium in Mathematik, Operational Research, Statistics and Economics (MORSE) an der University of Warwick: Er war dort als Forschungsassistent bei der Operational Research & Management Sciences Group tätig und arbeitete an der bi-objektiven robusten Optimierung mit Anwendungen in Netzwerken, die zufälligen Ausfällen unterliegen.



Klappentext

Sie möchten endlich wissen, was sich hinter Schlagworten wie Data Science und Machine Learning eigentlich verbirgt und was man alles damit anstellen kann? Auf allzu viel Mathematik würden Sie dabei aber gern verzichten? Dann sind Sie hier genau richtig: Dieses Buch bietet einen kompakten Einblick in die wichtigsten Schlüsselkonzepte der Datenwissenschaft und ihrer Algorithmen und zwar ohne Sie mit mathematischen Formeln und Details zu belasten!

Der Fokus liegt nach einer übergeordneten Einführung auf Anwendungen des maschinellen Lernens zur Mustererkennung und Vorhersage von Ergebnissen: In jedem Kapitel wird ein Algorithmus erläutert und mit einem leicht verständlichen, realen Anwendungsbeispiel verknüpft. Die Kombination aus intuitiven Erklärungen und zahlreichen Abbildungen ermöglicht dabei ein grundlegendes Verständnis, das ohne mathematische Formelsprache auskommt. Abschließend werden auch die Grenzen und Nachteile der betrachteten Algorithmen explizit aufgezeigt.


 Das Buch beschreibt die Schlüsselalgorithmen der Datenwissenschaften bildlich und eingängig. Eine nützliche Einführung für Anfänger, ein guter Überblick für Geschäftsleute, die mit Analysten zusammenarbeiten, oder einfach ein anregendes Lesevergnügen für alle, die wissen wollen, was mit ihren Daten geschieht. Dr. David Stillwell, stellvertretender Direktor des Psychometrics Centre an der University of Cambridge

Dank der exzellent veranschaulichten Konzepte konnten unsere Studenten aus den nicht-technischen Fächern die abstrakten Ideen des maschinellen Lernens ganz intuitiv verstehen. Ethan Chan, Big-Data-Dozent, Stanford University





Inhalt

Das Wichtigste in Kürze .- k-Means-Clustering.- Hauptkomponentenanalyse.- Assoziationsanalyse.- Soziale Netzwerkanalyse.- Regressionsanalyse.- k-nächste Nachbarn und Ausreißererkennung.- Support-Vektor-Maschine.- Entscheidungsbaum.- Random Forests.- Neuronale Netze.- A/B-Tests und vielarmige Banditen.- Anhang.

Produktinformationen

Titel: Data Science - was ist das eigentlich?!
Untertitel: Algorithmen des maschinellen Lernens verständlich erklärt
Übersetzer:
Autor:
EAN: 9783662567760
Digitaler Kopierschutz: Wasserzeichen
Format: E-Book (pdf)
Hersteller: Springer-Verlag GmbH
Genre: Naturwissenschaften allgemein
Anzahl Seiten: 179
Veröffentlichung: 24.10.2018
Dateigrösse: 6.8 MB