Willkommen, schön sind Sie da!
Logo Ex Libris

Idealtheorie

  • Kartonierter Einband
  • 176 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Inhalt § 1. Grundlagen und Ausgangspunkte.- 1. Gruppen mit Operatoren und Ideale.- 2. Prim- und Primärideale. Polynomringe.- ... Weiterlesen
20%
70.00 CHF 56.00
Print on demand - Exemplar wird für Sie besorgt.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

Inhalt

§ 1. Grundlagen und Ausgangspunkte.- 1. Gruppen mit Operatoren und Ideale.- 2. Prim- und Primärideale. Polynomringe.- 3. Der Zerlegungssatz in abstrakten Ringen.- 4. Zahlentheoretische Grundlagen der Idealtheorie.- 5. Ganz abgeschlossene Integritätsbereiche.- § 2. Abstrakte additive Idealtheorie.- 6. Isolierte Komponentenideale.- 7. Quotientenringe.- 8. Teilerfremde Ideale. Direkte Summen.- 9. Einartige Nullteilerringe.- 10. Einartige Integritätsbereiche.- 11. Operatorgruppen.- 12. Elementarteilergruppen.- 13. Primäre (Nullteiler-) Ringe.- 14. Additive Theorie der O-Ringe.- 15. Prim- und Primäridealketten in O-Ringen.- § 3. Polynomringe.- 16. Integritätsbereiche von endlichem Transzendenzgrad.- 17. Endliche Integritätsbereiche und Polynomringe. Ungemischtheitssätze.- 18. Allgemeine und spezielle Nullstellen eines Polynomideals.- 19. Nullstellentheorie der Potenzreihenideale.- 20. Das "Rechnen" mit Polynomidealen.- 21. Gruppentheorie der Polynomideale.- 22. Eliminationstheorie.- 23. Der Bézoutsche Satz und die Hentzeltschen Nullstellensätze.- 24. Hilberts Funktion.- 25. Das inverse System.- 26. Die Multiplizitätstheorie von vanderWaerden.- 27. Der Grad einer Mannigfaltigkeit und der "allgemeine" Bézoutsche Satz.- 28. Zweifach projektive Räume.- § 4. Einartige Bereiche.- 29. Endliche algebraische Erweiterung primärer Ringe.- 30. Konstruktiver Aufbau primärer zerlegbarer Ringe.- 31. Die perfekten Hüllen der Integritätsbereiche mit Z.P.I.- 32. Erweiterung eines einartigen Integritätsbereichs zum ganz abgeschlossenen Ring.- 33. Normensätze.- 34. Diskriminantensätze.- 35. Verallgemeinerter Diskriminantensatz. Endlichkeitsprobleme.- § 5. Bewertungstheorie.- 36. Bewertungsringe.- 37. Hauptordnungen.- 38. Z.P.E.-Ringe.- 39. Abschließung eines O-Rings.- 40. Allgemeine Bewertungsringe.- 41. Idealtheorie der Bewertungsringe.- 42. Bewertungen endlicher Erweiterungskörper eines "Grundkörpers".- § 6. V-Ideale und A-Ideale. Verhalten der Primideale bei Ringerweiterungen.- 43. V-Ideale.- 44. Unendliche algebraische Zahlkörper.- 45. Polynomringsätze und Permanenzsätze.- 46. Multiplikationsringe und A-Ideale.- 47. Einordnung des A-Prozesses in die Bewertungstheorie.- 48. Der Permanenzsatz der Primideale.- 49. Zusammenhang zwischen den Primidealen verschiedener Ringe mit gleichem Quotientenkörper.- 50. Divisoren zweiter Art.- Anhang: Bemerkungen zur Terminologie.- Ergänzungen zur 2. Auflage.

Produktinformationen

Titel: Idealtheorie
Autor:
EAN: 9783642870347
ISBN: 978-3-642-87034-7
Format: Kartonierter Einband
Herausgeber: Springer Berlin Heidelberg
Genre: Sonstiges
Anzahl Seiten: 176
Gewicht: 277g
Größe: H235mm x B155mm x T9mm
Jahr: 2014
Auflage: 2. Aufl. 1968. Softcover reprint of the original 2