

Beschreibung
Umfassender Überblick über die wichtigsten und aktuellen Methoden der Zeitreihenanalyse. Für das Selbststudium geeignet Erstes deutschsprachiges Lehrbuch über einen so breiten Text: Dieses Lehrbuch vermittelt einen umfassenden Überblick über die wichtigsten Me...Umfassender Überblick über die wichtigsten und aktuellen Methoden der Zeitreihenanalyse.
Für das Selbststudium geeignet Erstes deutschsprachiges Lehrbuch über einen so breiten Text: Dieses Lehrbuch vermittelt einen umfassenden Überblick über die wichtigsten Methoden der Zeitreihenanalyse. Neben Grund- konzepten deskriptiver Zeitreihenanalyse werden einleitend einfache Saisonbereinigungs- und Prognoseverfahren dargestellt, anschließend werden univariate stochastische Prozesse, VAR-Prozesse, Parameterschätzung, Identifikation, Modelldiagnose, Ausreißeranalyse, univariate ARIMA-Prognosen, Transferfunktionen (ARMAX)-Modelle, ARMAX-Prognosen, Strukturelle Komponentenmodelle und Spektralanalyse behandelt. Ausführlich dargestellt werden ferner die praktisch wichtigsten Saisonbereinigungsverfahren, Design digitaler Filter (FIR- und IIR-Filter), Unit-root-Prozesse, Unit-root-Tests, Kointegration, Fehler-Korrektur-Modell, Kointegrationstest sowie nicht-linear Zeitreihenmodelle (ARCH-GA RCH-Prozesse, bilineare und Threshold-Prozesse).
Klappentext
Dieses Lehrbuch vermittelt einen umfassenden Überblick über die wichtigsten Methoden der Zeitreihenanalyse. Neben Grundkonzepten deskriptiver Zeitreihenanalyse werden einleitend einfache Saisonbereinigungs- und Prognoseverfahren dargestellt, anschließend werden univariate stochastische Prozesse, VAR-Prozesse, Parameterschätzung, Identifikation, Modelldiagnose, Ausreißeranalyse, univariate ARIMA-Prognosen, Transferfunktionen (ARMAX)-Modelle, ARMAX-Prognosen, Strukturelle Komponentenmodelle und Spektralanalyse behandelt. Ausführlich dargestellt werden ferner die praktisch wichtigsten Saisonbereinigungsverfahren, Design digitaler Filter (FIR- und IIR-Filter), Unit-root-Prozesse, Unit-root-Tests, Kointegration, Fehler-Korrektur-Modell, Kointegrationstest sowie nicht-lineare Zeitreihenmodelle (ARCH-GARCH-Prozesse, bilineare und Threshold-Prozesse).
Inhalt
I. Elementare Zeitreihenanalyse.- I.1. Definitionen, Grundkonzepte, Beispiele.- I.2. Das traditionelle Zeitreihen-Komponentenmodell.- II. Einfache Saisonbereinigungsverfahren.- II.1. Saisonbereinigung im additiven Komponentenmodell bei konstanter Saisonfigur.- II.2. Saisonbereinigung im additiven Komponentenmodell bei variabler Saisonfigur.- II.3. Einige praktische Probleme der Saisonbereinigung.- III. Elementare Filter-Operationen.- IV. Prognosen auf der Basis von Exponential-Smoothing-Ansätzen.- IV.1. Vorbemerkungen.- IV.2. Einfaches Exponential-Smoothing.- IV.3. Exponential-Smoothing nach Holt.- IV.4. Exponential-Smoothing nach Winters.- IV.5. Ergänzende Bemerkungen zum Exponential-Smoothing.- V. Grundzüge der Theorie der stochastischen Prozesse.- V.1. Zufallsvariable und Zufallsvektoren.- V.2. Stochastische Prozesse.- V.3. Stationäre Stochastische Prozesse.- V.4. Spezielle stationäre Prozesse.- VI. Vektorielle stochastische Prozesse.- VI.1. Grundlagen.- VI.2. VAR-Prozesse.- VII. Schätzprobleme bei stochastischen Prozessen.- VII.1 Schätzen von Parametern und Momentfunktionen univariater Prozesse.- VII.2 Parameterschätzung vektorieller Prozesse.- VII. Identifikation stochastischer Prozesse.- VIII.1. Identifikation univariater ARMA- und ARIMA-Prozesse.- VIII.2. Identifikation vektorieller ARMA- und ARIMA-Prozesse.- IX. Modelldiagnose.- IX.1 Modelldiagnose bei univariaten ARMA- und ARIMA-Modellen.- IX.2 Modelldiagnose bei vektoriellen ARMA- und ARIMA-Prozessen.- X. Ausrei?er-Analyse.- X.1. Grundlagen und Beispiele.- X.2. Additive und innovative Ausrei?er und ihre Bestimmung.- XI. Prognosen mit ARMA- und ARIMA-Modellen.- XI.1. Prognosen mit univariaten ARMA- und ARIMA-Modellen.- XI.2. Prognosen mit vektoriellen ARMA- und ARIMA-Prozessen.- XII.Transferfunktionen (ARMAX)-Modelle.- XII.1 Transferfunktionen-Modelle mit einer Input-Variablen.- XII.2. Transferfunktionen mit mehreren Inputs.- XIII. Strukturelle Komponentenmodelle.- XIII.1 Einleitung.- XIII.2 Modellierung der Komponenten.- XIII.3. Das ?Basic Structural Model? nach Harvey.- XIII.4. Strukturelle Komponentenmodelle und ARIMA-Modelle.- XIII.5. Parameterschätzung bei strukturellen Komponentenmodellen.- XIII.6. Beispiel.- XIII.7. Abschlie?ende Bemerkungen.- XIV. Grundzüge der Spektralanalyse.- XIV.1. Vorbemerkungen.- XIV.2. Spektren stationärer Prozesse.- XIV.3 Schätzung eines Spektrums.- XIV.4 Spektralanalyse und Saisonalität.- XV. Saisonbereinigungsverfahren und Probleme der Saisonbereinigung.- XV.1. Einleitung.- XV.2. Bemerkungen zu einfachen Saisonbereinigungsverfahren und einigen Grundproblemen der Saisonbereinigung.- XV.3. Spezielle Saisonbereinigungsverfahren.- XV.4. Ein Verfahren auf der Basis von ARIMA-Modellen: SEATS.- XV.5. Weitere Verfahren.- XV.6. Saisonbereinigung als Filter-Design-Problem.- XV.7. Zum Vergleich von Saisonbereinigungsverfahren.- XVI. Grundzüge der Theorie digitaler Filter.- XVI.1. Grundlagen.- XVI.2. Elemente der z-Transformation.- XVI.3. Grundbegriffe der Filtertheorie.- XVII. Konstruktionsmethoden für digitale Filter.- XVII.1 Konstruktionsmethoden für FIR-Filter.- XVII.2. FIR-Fenster-Filter.- XVII.3. Modifizierte FIR-Fenster-Filter.- XVII.4. Optimale FIR-Filter.- XVII.5. Konstruktion von IIR-Filtern.- XVII.6. Filtern im Frequenzbereich.- XVIII. Unit-roots und Unit-root-Tests.- XVIII.1. Vorbemerkungen.- XVIII.2. Differenzen-Stationäre versus Trend-Stationäre Prozesse.- XVIII.3. Trendbereinigung bei DS- und TS-Prozessen.- XVIII.4. Unit-root-Test.- XIX. Kointegration.- XIX.1. Grundlagen.- XIX.2.Full-Information Maximum-Likelihood-Analyse kointegrierter Systeme.- XX. Nicht-lineare Zeitreihenmodelle.- XX.1. Modellierung von Heteroskedastizität (ARCH-GARCH-Modelle.- XX.2. Bilineare Prozesse.- XX.3. Random Coefficient Autoregressive Modelle.- XX.4. TARMA-Modelle.- XX.5. CTARMA-Modelle.- Literatur.- Index:.
