

Beschreibung
Aus der Buchreihe »Informatik verstehen«. Ideal zum Studium als Vorlesungsbegleiter Theoretische Informatik der Vorlesungsbegleiter. Berechenbarkeit, formale Sprachen, Algorithmik und Komplexitätstheorie sind theoretische Themen mit praktischer Relevanz, zu de...Aus der Buchreihe »Informatik verstehen«. Ideal zum Studium als Vorlesungsbegleiter
Theoretische Informatik der Vorlesungsbegleiter. Berechenbarkeit, formale Sprachen, Algorithmik und Komplexitätstheorie sind theoretische Themen mit praktischer Relevanz, zu denen es ebenso praktische Zugänge gibt. Freuen Sie sich auf eine moderene Didaktik, die streng Formales mit Ihrer Intuition verknüpft, lernfreundlich ausarbeitet und schließlich zu jedem Thema Anwendungsfelder der Informatik vorstellt. Stefan Neubert hat nicht nur selbst Freude an der theoretischen Informatik, sondern widmet sich auch mit Leidenschaft ihrer Vermittlung zu Beginn und im Laufe des Bachelorstudiums. Eine Einführung mit vielen Aufgaben und Beispielen, auch zum Selbststudium geeignet. Aus dem Inhalt: Grundlegende mathematische Notation Modelle und Grenzen der Berechenbarkeit Formale Sprachen: Endliche Automaten, kontextfreie Grammatiken, Pumping Lemmata und mehr Beweisverfahren für Korrektheit und Laufzeit von Algorithmen Paradigmen für den Algorithmenentwurf Amortisierte Analyse und untere Schranke für Laufzeiten NP-Vollständigkeit und Reduktion
»Das Buch hier bietet einen guten, intuitiven Zugang zu diesem Fach und eignet sich hervorragend als Vorlesungsbegleiter und auch zum Selbststudium.«
Autorentext
Stefan Neubert hat zahlreiche Informatik-Workshops und -Camps für Schüler entwickelt und durchgeführt. Er unterstützt seit Jahren die Bachelor-Lehrveranstaltung "Theoretische Informatik" als Tutor und arbeitet mit Leidenschaft dafür, komplexe Themen verständlich zu machen. Der PhD-Student am Hasso-Plattner-Institut schätzt sein Fach auch dafür, dass es Kreativität und Teamfähigkeit erfordert, obwohl das vielleicht oft nicht vermutet wird. Schüler wie Leser schätzen seine verständliche Sprache und anschaulichen Beispiele vor allem dann, wenn es anspruchsvoller wird.
Klappentext
Theoretische Informatik - der Vorlesungsbegleiter. Berechenbarkeit, formale Sprachen, Algorithmik und Komplexitätstheorie sind theoretische Themen mit praktischer Relevanz, zu denen es ebenso praktische Zugänge gibt. Freuen Sie sich auf eine moderene Didaktik, die streng Formales mit Ihrer Intuition verknüpft, lernfreundlich ausarbeitet und schließlich zu jedem Thema Anwendungsfelder der Informatik vorstellt. Stefan Neubert hat nicht nur selbst Freude an der theoretischen Informatik, sondern widmet sich auch mit Leidenschaft ihrer Vermittlung zu Beginn und im Laufe des Bachelorstudiums. Eine Einführung mit vielen Aufgaben und Beispielen, auch zum Selbststudium geeignet.
Aus dem Inhalt:
NP-Vollständigkeit und Reduktion
Zusammenfassung
»Ein anspruchsvolles Buch für Informatikstudenten und für alle, die sich für das theoretische Fundament der Informatik interessieren.« LINUX MAGAZIN 202108
Inhalt
1.1 ... Kompetenzen für die theoretische Arbeit ... 16
1.2 ... Themen der theoretischen Informatik ... 18
1.3 ... Anleitung fürs Buch ... 20
1.4 ... Danksagungen ... 21
2.1 ... Logische Aussagen ... 24
2.2 ... Mengen ... 27
2.3 ... Relationen und Funktionen ... 32
2.4 ... Graphen ... 37
2.5 ... Unendlichkeiten und Abzählbarkeit ... 40
2.6 ... Beweistechniken ... 42
2.7 ... Aufgaben ... 57
2.8 ... Lösungen ... 58
TEIL I. Berechenbarkeit und formale Sprachen ... 65
3.1 ... Algorithmus ... 68
3.2 ... Zu viele Funktionen ... 69
3.3 ... Das Halteproblem ... 70
3.4 ... Kontrollfragen ... 72
3.5 ... Antworten ... 72
4.1 ... Formalisierung von Problemen ... 73
4.2 ... Funktionen berechnen ... 75
4.3 ... Datencodierung ... 75
4.4 ... Sprachen entscheiden ... 78
4.5 ... Problemklassen der Berechenbarkeitstheorie ... 79
4.6 ... Aufgaben ... 82
4.7 ... Lösungen ... 83
5.1 ... Definition ... 85
5.2 ... Die Chomsky-Hierarchie ... 88
5.3 ... Aufgaben ... 89
5.4 ... Lösungen ... 90
6.1 ... Deterministische endliche Automaten ... 92
6.2 ... Nichtdeterministische endliche Automaten ... 103
6.3 ... Grammatiken ... 111
6.4 ... Reguläre Ausdrücke ... 120
6.5 ... Abschlusseigenschaften ... 127
6.6 ... Entscheidungsprobleme auf regulären Sprachen ... 132
6.7 ... Äquivalenzklassenzerlegung ... 134
6.8 ... Nichtreguläre Sprachen ... 139
6.9 ... Ausblick ... 144
6.10 ... Aufgaben ... 144
6.11 ... Lösungen ... 149
7.1 ... Kontextfreie Grammatiken ... 162
7.2 ... Eindeutige Ableitungsbäume ... 164
7.3 ... Chomsky-Normalform ... 166
7.4 ... Exkurs: Kellerautomaten ... 170
7.5 ... Abschlusseigenschaften ... 175
7.6 ... Entscheidungsprobleme auf kontextfreien Sprachen ... 176
7.7 ... Nicht-kontextfreie Sprachen ... 181
7.8 ... Ausblick ... 183
7.9 ... Aufgaben ... 184
7.10 ... Lösungen ... 186
8.1 ... Kontextsensitive und monotone Grammatiken ... 194
8.2 ... Das Wortproblem auf kontextsensitiven Sprachen ... 195
9.1 ... Turingmaschinen ... 199
9.2 ... While-Programme ... 202
9.3 ... Gödelnummern ... 218
9.4 ... Das universelle While-Programm ... 220
9.5 ... Das schrittbeschränkte universelle While-Programm ... 223
9.6 ... Diagonalisierung und min-Suche ... 224
9.7 ... Prädikate für semi-entscheidbare Sprachen ... 226
9.8 ... Semi-Entscheidbarkeit vs. Aufzählbarkeit ... 227
9.9 ... Das S-m-n-Theorem ... 228
9.10 ... Das kleenesche Rekursionstheorem ... 230
9.11 ... Weitere Modelle und Charakterisierungen ... 233
9.12 ... Aufgaben ... 233
9.13 ... Lösungen ... 235
10.1 ... Beweise mit KRT ... 243
10.2 ... Der Satz von Rice ... 244
10.3 ... Reduktionen ... 246
10.4 ... RE-Vollständigkeit ... 250
10.5 ... Ausblick: Die arithmetische Hierarchie ... 251
10.6 ... Aufgaben ... 252
10.7 ... Lösungen ... 254
TEIL II. Algorithmik ... 259
12.1 ... Das Maschinenmodell ... 264
12.2 ... Die Laufzeit eines Algorithmus ... 267
12.3 ... Die Größe einer Eingabe ... 268
12.4 ... Die Landau-Notation ... 268
12.5 ... Aufgaben ... 271
12.6 ... Lösungen ... 272
13.1 ... Arrays ... 275
13.2 ... Listen ... 277
13.3 ... Verschachtelte Datenstrukturen und Graphen ... 279
13.4 ... Aufgaben ... 281
13.5 ... Lösungen ... 282
14.1 ... Lineare Suche ... 286
14.2 ... Backtracking/Tiefensuche ... 288
14.3 ... Aufgaben ... 292
14.4 ... Lösungen ... 293
…
