Jetzt 20% Rabatt auf alle English Books. Jetzt in über 4 Millionen Büchern stöbern und profitieren!
Willkommen, schön sind Sie da!
Logo Ex Libris

MLOps Kernkonzepte im Überblick

  • Kartonierter Einband
  • 204 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Erfolgreiche ML-Pipelines entwickeln und mit MLOps organisatorische Herausforderungen meistern Stellt DevOps-Konzepte vor, die die... Weiterlesen
20%
48.90 CHF 39.10
Sie sparen CHF 9.80
Auslieferung erfolgt in der Regel innert 2 bis 4 Werktagen.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

Erfolgreiche ML-Pipelines entwickeln und mit MLOps organisatorische Herausforderungen meistern

  • Stellt DevOps-Konzepte vor, die die speziellen Anforderungen von ML-Anwendungen berücksichtigen
  • Umfasst die Verwaltung, Bereitstellung, Skalierung und Überwachung von Machine-Learning-Modellen im Unternehmensumfeld
  • Für Data Scientists und Data Engineers, die nach besseren Strategien für den produktiven Einsatz ihrer ML-Modelle suchen

Machine-Learning-Modelle zu entwickeln ist das eine, sie im Produktivbetrieb effizient einzusetzen, eine ebenfalls nicht zu unterschätzende Herausforderung so die Erfahrung vieler Unternehmen. Dieses Buch zeigt Ihnen, wie Sie mithilfe durchdachter MLOps-Strategien eine stabile DevOps-Umgebung für Ihre ML-Anwendungen aufbauen, Ihre Modelle kontinuierlich verbessern und langfristig warten.

Das Buch erläutert MLOps-Schlüsselkonzepte, mit denen Data Scientists und Data Engineers ML-Pipelines und -Workflows optimieren können. Anhand von Fallbeispielen aus der ganzen Welt geben neun ML-Experten praxiserprobte Hilfestellungen zu den fünf Schritten des Modelllebenszyklus Entwicklung, Preproduction, Deployment, Monitoring und Governance. Sie erfahren auf diese Weise, wie robuste MLOps-Prozesse umfassend in den ML-Produktworkflow integriert werden können.

  • Erschließen Sie den Wert Ihrer Data-Science-Anwendungen für Ihr Unternehmen vollständig, indem Sie Störfaktoren in ML-Pipelines und -Workflows ausräumen
  • Verfeinern Sie Ihre ML-Modelle durch Retraining, regelmäßiges Tuning und grundlegende Überarbeitung, um eine dauerhaft hohe Qualität zu gewährleisten
  • Organisieren Sie den MLOps-Lebenszyklus so, dass Risiken, die in den Modellen stecken könnten, minimiert werden, damit die Ergebnisse unverzerrt, ausgewogen und nachvollziehbar sind
  • Optimieren Sie ML-Modelle nicht nur für die eigene Deployment-Pipeline, sondern auch für externe Partner, deren Systeme komplexer und weniger standardisiert sind

»Wenn Sie auf der Suche nach Strategien sind, um die konkreten Prozesse der ML-Entwicklung zwischen den Teams zu verbessern, ist dieses Buch genau das Richtige für Sie.«

Adi Polak, Senior Software Engineer, Microsoft



Autorentext
Mark Treveil hat bereits zahlreiche Produkte in verschiedenen Bereichen wie etwa Telekommunikation, Bankwesen und dem Online-Börsengeschäft konzipiert. Sein eigenes Startup hat eine regelrechte Wende in der britischen Kommunalverwaltung initiiert, wo seine Digitalisierungslösung noch immer vorherrscht. Derzeit ist er im Pariser Produktteam von Dataiku beschäftigt.

Produktinformationen

Titel: MLOps Kernkonzepte im Überblick
Untertitel: Machine-Learning-Prozesse im Unternehmen nachhaltig automatisieren und skalieren
Autor:
Übersetzer:
EAN: 9783960091721
ISBN: 978-3-96009-172-1
Format: Kartonierter Einband
Hersteller: O'Reilly
Herausgeber: O'Reilly
Genre: Programmiersprachen
Veröffentlichung: 01.09.2021
Anzahl Seiten: 204
Gewicht: 390g
Größe: H240mm x B165mm x T15mm
Jahr: 2021
Untertitel: Deutsch
Land: DE

Weitere Produkte aus der Reihe "Animals"