Willkommen, schön sind Sie da!
Logo Ex Libris

Differentialgeometrie von Kurven und Flächen

  • Kartonierter Einband
  • 280 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Es gibt in der Differentialgeometrie von Kurven und FJachen zwei Betrachtungsweisen. Die eine, die man klassische Differentialgeo... Weiterlesen
20%
82.00 CHF 65.60
Print on demand - Exemplar wird für Sie besorgt.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

Klappentext

Es gibt in der Differentialgeometrie von Kurven und FJachen zwei Betrachtungsweisen. Die eine, die man klassische Differentialgeometrie nennen konnte, entstand zusammen mit den Anfangen der Differential-und Integralrechnung. Grob gesagt studiert die klassische Differentialgeometrie lokale Eigenschaften von Kurven und FHichen. Dabei verstehen wir unter lokalen Eigenschaften solche, die nur vom Verhalten der Kurve oder Flache in der Umgebung eines Punktes abhiingen. Die Methoden, die sich als fUr das Studium solcher Eigenschaften geeignet erwiesen haben, sind die Methoden der Differentialrechnung. Aus diesem Grund sind die in der Differentialgeometrie untersuchten Kurven und Flachen durch Funktionen definiert, die von einer gewissen Differenzierbarkeitsklasse sind. Die andere Betrachtungsweise ist die sogenannte globale Differentialgeometrie. Hierbei untersucht man den EinfluB lokaler Eigenschaften auf das Verhalten der gesamten Kurve oder Flache. Der interessanteste und reprasentativste Teil der klassischen Differentialgeometrie ist wohl die Untersuchung von Flachen. Beim Studium von Flachen treten jedoch in nattirlicher Weise einige 10k ale Eigenschaften von Kurven auf. Deshalb benutzen wir dieses erste Kapi­ tel, urn kurz auf Kurven einzugehen.



Inhalt

1 Kurven.- 1.1 Einleitung.- 1.2 Parametrisierte Kurven.- 1.3 Reguläre Kurven. Bogenlänge.- 1.4 Das Vektorprodukt in ?3.- 1.5 Die lokale Theorie von Kurven, die nach der Bogenlänge parametrisiert sind.- 1.6 Die lokale kanonische Form.- 1.7 Globale Eigenschaften ebener Kurven.- 2 Reguläre Flächen.- 2.1 Einleitung.- 2.2 Reguläre Flächen. Urbilder regulärer Werte.- 2.3 Parameterwechsel. Differenzierbare Funktionen auf Flächen.- 2.4 Die Tangentialebene. Das Differential einer Abbildung.- 2.5 Die erste Fundamentalform. Flächeninhalt.- 2.6 Orientierung von Flächen.- 2.7 Eine Charakterisierung kompakter orientierbarer Flächen.- 2.8 Eine geometrische Definition des Flächeninhalts.- 3 Die Geometrie der Gauß-Abbildung.- 3.1 Einleitung.- 3.2 Die Definition der Gauß-Abbildung und ihre fundamentalen Eigenschaften.- 3.3 Die Gauß-Abbildung in lokalen Koordinaten.- 3.4 Vektorfelder.- 3.5 Regelflächen und Minimalflächen.- 4 Die innere Geometrie von Flächen.- 4.1 Einleitung.- 4.2 Isometrie. Konforme Abbildungen.- 4.3 Der Satz von Gauß und die Verträglichkeitsbedingungen.- 4.4 Parallelverschiebung. Geodätische.- 4.5 Der Satz von Gauß-Bonnet und seine Anwendungen.- 4.6 Die Exponentialabbildung. Geodätische Polarkoordinaten.- 4.7 Weitere Eigenschaften von Geodätischen. Konvexe Umgebungen.- Anhang: Beweise der Fundamentalsätze der lokalen Kurven-und Flächentheorie.- Hinweise und Lösungen.- Kommentiertes Literaturverzeichnis.- Namen-und Sachwortverzeichnis.

Produktinformationen

Titel: Differentialgeometrie von Kurven und Flächen
Untertitel: vieweg studium; Aufbaukurs Mathematik
Autor:
EAN: 9783528072551
ISBN: 978-3-528-07255-1
Format: Kartonierter Einband
Herausgeber: Vieweg+Teubner Verlag
Genre: Geometrie
Anzahl Seiten: 280
Gewicht: 483g
Größe: H244mm x B169mm x T20mm
Jahr: 1983
Auflage: 1983