Willkommen, schön sind Sie da!
Logo Ex Libris

Analysis 1

  • Kartonierter Einband
  • 414 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
(3) LovelyBooks.de Bewertung
LovelyBooks.de Bewertung
(2)
(0)
(1)
(0)
(0)
powered by 
In der neuen Auflage präsentiert das erfolgreiche Lehrbuch den Kanon der Analysis einer Veränderlichen. Durch die zahlreichen Beis... Weiterlesen
20%
39.90 CHF 31.90
Auslieferung erfolgt in der Regel innert 2 bis 4 Werktagen.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

In der neuen Auflage präsentiert das erfolgreiche Lehrbuch den Kanon der Analysis einer Veränderlichen. Durch die zahlreichen Beispiele und und Übungsaufgaben mit Lösungen eignet es sich bestens als Begleit-Literatur zu einer Vorlesung, zum Selbststudium und zur Prüfungsvorbereitung. Die vielen historischen Anmerkungen und eingestreuten Perlen der klassischen Analysis geben diesem Lehrbuch seinen besonderen Reiz.

Klappentext

Bereits in 6. Auflage präsentiert das erfolgreiche Lehrbuch den Kanon der Analysis einer Veränderlichen. Durch die zahlreichen Beispiele und und Übungsaufgaben mit Lösungen eignet es sich bestens als Begleit-Literatur zu einer Vorlesung, zum Selbststudium und zur Prüfungsvorbereitung. Die vielen historischen Anmerkungen und eingestreuten Perlen der klassischen Analysis geben diesem Lehrbuch seinen besonderen Reiz.



Inhalt
1 Natürliche Zahlen und vollständige Induktion.- 1.1 Vollständige Induktion.- 1.2 Fakultät und Binomialkoeffizienten.- 1.3 Aufgaben.- 2 Reelle Zahlen.- 2.1 Die Körperstruktur von ?.- 2.2 Die Anordnung von ?.- 2.3 Die Vollständigkeit von ?.- 2.4 ? ist nicht abzählbar.- 2.5 Aufgaben.- 3 Komplexe Zahlen.- 3.1 Der Körper der komplexen Zahlen.- 3.2 Die komplexe Zahlenebene.- 3.3 Algebraische Gleichungen in ?.- 3.4 Die Unmöglichkeit einer Anordnung von ?.- 3.5 Aufgaben.- 4 Funktionen.- 4.1 Grundbegriffe.- 4.2 Polynome.- 4.3 Rationale Funktionen.- 4.4 Aufgaben.- 5 Folgen.- 5.1 Konvergenz von Flogen.- 5.2 Rechenregeln.- 5.3 Monotone Folgen.- 5.4 Eine Rekursionsfolge zur Berechnung von Quadratwurzeln.- 5.5 Der Satz von Bolzano-Weierstraß.- 5.6 Das Konvergenzkriterium von Bolzano-Cauchy. Nochmals die Vollständigkeit von ?.- 5.7 Uneigentliche Konvergenz.- 5.8 Aufgaben.- 6 Reihen.- 6.1 Konvergenz von Reihen.- 6.2 Konvergenzkriterien.- 6.3 Summierbare Familien.- 6.4 Potenzreihen.- 6.5 Aufgaben.- 7 Stetige Funktionen. Grenzwerte.- 7.1 Stetigkeit.- 7.2 Rechnen mit stetigen Funktionen.- 7.3 Erzeugung stetiger Funktionen durch normal konvergente Reihen.- 7.4 Stetige reelle Funktionen auf Intervallen. Der Zwischenwertsatz.- 7.5 Stetige Funktionen auf kompakten Mengen. Der Satz vom Maximum und Minimum.- 7.6 Anwendung: Beweis des Fundamentalsatzes der Algebra.- 7.7 Stetige Fortsetzung. Grenzwerte von Funktionen.- 7.8 Einseitige Grenzwerte. Uneigentliche Grenzwerte.- 7.9 Aufgaben.- 8 Die Exponentialfunktionund die trigonometrischen Funktionen.- 8.1 Definition der Exponentialfunktion.- 8.2 Die Exponentialfunktion für reelle Argumente.- 8.3 Der natürliche Logarithmus.- 8.4 Exponentialfunktionen zu allgemeinen Basen. Allgemeine Potenzen.- 8.5 Binomialreihen und Logarithmusreihe.- 8.6 Definition der trigonometrischen Funktionen.- 8.7 Nullstellen und Periodizität.- 8.8 Die Arcus-Funktionen.- 8.9 Polarkoordinaten komplexer Zahlen.- 8.10 Geometrie der Exponentialabbildung. Hauptzweig des komplexen Logarithmus und des Arcustangens.- 8.11 Die Zahl ?.- 8.12 Die hyperbolischen Funktionen.- 8.13 Aufgaben.- 9 Differentialrechnung.- 9.1 Die Ableitung einer Funktion.- 9.2 Ableitungsregeln.- 9.3 Mittelwertsatz und Schrankensatz.- 9.4 Beispiele und Anwendungen.- 9.5 Reihen differenzierbarer Funktionen.- 9.6 Ableitungen höherer Ordnung.- 9.7 Konvexität.- 9.8 Konvexe Funktionen und Ungleichungen.- 9.9 Fast überall differenzierbare Funktionen. Verallgemeinerter Schrankensatz.- 9.10 Der Begriff der Stammfunktion.- 9.11 Eine auf ganz ? stetige, nirgends differenzierbare Funktion.- 9.12 Aufgaben.- 10 Lineare Differentialgleichungen.- 10.1 Eindeutigkeitssatz und Dimensionsabschätzung.- 10.2 Ein Fundamentalsystem für die homogene Gleichung.- 10.3 Partikuläre Lösungen bei speziellen Inhomogenitäten.- 10.4 Anwendung auf Schwingungsprobleme.- 10.5 Partikuläre Lösungen bei allgemeinen Inhomogenitäten.- 10.6 Erweiterung des Lösungsbegriffes.- 10.7 Aufgaben.- 11 Integralrechnung.- 11.1 Treppenfunktionen und ihre Integration.- 11.2 Regelfunktionen.- 11.3 Integration der Regelfunktionen über kompakte Intervalle.- 11.4 Der Hauptsatz der Differential- und Integralrechnung. Stammfunktionen zu Regelfunktionen.- 11.5 Erste Anwendungen.- 11.6 Integration elementarer Funktionen.- 11.7 Integration normal konvergenter Reihen.- 11.8 Riemannsche Summen.- 11.9 Integration über nicht kompakte Intervalle.- 11.10 Die Eulersche Summationsformel.- 11.11 Aufgaben.- 12 Geometrie differenzierbarer Kurven.- 12.1 Parametrisierte Kurven. Grundbegriffe.- 12.2 Die Bogenlänge.- 12.3 Parameterwechsel.- 12.4 Krümmung ebener Kurven.- 12.5 Die Sektorfläche ebener Kurven.- 12.6 Kurven in Polarkoordinaten.- 12.7 Liftung und Windungzahlen.- 12.8 Noch ein Beweis des Fundamentalsatzes der Algebra.- 12.9 Geometrie der Planetenbewegung Die drei Keplerschen Gesetze.- 12.10 Aufgaben.- 13 Elementar integrierbare Differentialgleichungen.- 13.1 Wachstumsmodelle. Lineare und Bernoullische Gleichungen.- 13.2 Differentialgleichungen mit getrennten Veränderlichen.- 13.3 Nicht-lineare Schwingungen. Die Differentialgleichung % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz % ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb % L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe % pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam % aaeaqbaaGcbaGafmiEaGNbamaacqGH9aqpcqWGMbGzcqGGOaakcqWG % 4baEcqGGPaqkaaa!41D4! $$ \ddot x = f(x) $$.- 13.4 Aufgaben.- 14 Lokale Approximation von Funktionen. Taylorpolynome und Taylorreihen.- 14.1 Approximation durch Taylorpolynome.- 14.2 Taylorreihen. Rechnen mit Potenzreihen.- 14.3 Bernoulli-Zahlen und Cotangensreihe. Bernoulli-Polynome.- 14.4 Das Newton-Verfahren.- 14.5 Aufgaben.- 15 Globale Approximation von Funktionen. Gleichmäßige Konvergenz.- 15.1 Gleichmäßige Konvergenz.- 15.2 Vertauschungssätze.- 15.3 Kriterien für gelichmäßige Konvergenz.- 15.4 Anwendung: dei Eulerschen Formeln für ?(2n).- 15.5 Approximation durch Faltung mit Dirac-Folgen.- 15.6 Lokal gleichmäßige Konvergenz. Der Überdeckungssatz von Heine-Borel.- 15.7 Der Approximationssatz von Stone.- 15.8 Aufgaben.- 16 Approximation periodischer Funktionen. Fourierreihen.- 16.1 Der Approximationssatz von Fejér.- 16.2 Definition der Fourierreihen. Erste Beispiele und Anwendungen.- 16.3 Punktweise Konvergenz nach Dirichlet.- 16.4 Ein Beispiel von Fejér.- 16.5 Die Besselsche Approximation periodischer Funktionen.- 16.6 Fourierreihen stückweise stetig differenzierbarer Funktionen.- 16.7 Konvergenz im quadratischen Mittel. Die Parsevalsche Gleichung.- 16.8 Anwendung: das isoperimetrische Problem.- 16.9 Wärmeleitung in einem Ring. Die Thetafunktion.- 16.10 Die Poissonsche Summenformel.- 16.11 Aufgaben.- 17 Die Gammafunktion.- 17.1 Die Gammafunktion nach Gauß.- 17.2 Der Eindeutigkeitssatz der Gammafunktion von Bohr und Mollerup. Die Eulersche Integraldarstellung.- 17.3 Die Stirlingsche Formel.- 17.4 Aufgaben.- Biographische Notiz zu Ewer.- Lösungen zu den Aufgaben.- Literatur.- Bezeichnungen.- Namen- und Sachverzeichnis.

Produktinformationen

Titel: Analysis 1
Untertitel: Mit 250 Aufgaben mit Lösungen
Autor:
EAN: 9783540403715
ISBN: 978-3-540-40371-5
Format: Kartonierter Einband
Herausgeber: Springer
Genre: Sonstiges
Anzahl Seiten: 414
Gewicht: 660g
Größe: H236mm x B156mm x T27mm
Jahr: 2003
Auflage: 6. A.
Land: DE

Weitere Produkte aus der Reihe "Springer-Lehrbuch"