Willkommen, schön sind Sie da!
Logo Ex Libris

Geometrische und algebraische Methoden der Physik: Supermannigfaltigkeiten und Virasoro-Algebren

  • Kartonierter Einband
  • 372 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Klassisch sind die mathematischen Methoden in der Physik analytischer Na tur. Dies entspricht der engen Verzahnung von Mathematik ... Weiterlesen
20%
70.00 CHF 56.00
Print on demand - Exemplar wird für Sie besorgt.

Beschreibung

Klassisch sind die mathematischen Methoden in der Physik analytischer Na tur. Dies entspricht der engen Verzahnung von Mathematik und Physik in ihrer Entwicklung bis zum Ende des 19. Jahrhunderts. Die erste und ftir ei nige Zeit auch einzige geometrische Theorie der Physik ist Einsteins allgemei ne Relativitatstheorie, Es ist bemerkenswert, daB sich die Riemannsche Geo metrie als mathematische Grundlage der Einsteinschen Theorie nicht mit der Relativitatstheorie entwickelte. Einstein fand diese Geometrie "fertig" vor und erkannte ihre Relevanz filr seine physikalischen Uberlegungen, Eine weitere Phase engen Zusammenwirkens zwischen Mathematik und Physik ergab sich in der Quantenmechanik. J. von Neumann schuf ein wesentliches Stuck der Funktionalanalysis als den mathematischen Rahmen fur die in den zwanziger Jahren entwickelte Quantenmechanik. Danach begannen in der Physik die Zei ten der Storungsrechnung. Eine neue geometrische Phase in der theoretischen Physik begann mit der Entwicklung von Eichtheorien durch Yang und Mills. (Der Name "Eichtheorie" geht auf einen fehlgeschlagenen Versuch Hermann Weyls zuriick, allgemeine Relativitatstheorie und Maxwellsche Elektrodynamik in einer gemeinsamen Theorie zu vereinigen. ) In den Eichtheorien formulierten Physiker so ziemlich dasselbe, was Mathematiker etwa zur gleichen Zeit in der Theorie der Hauptfaserbtindel und ihren Anwendungen in der Differentialgeo metrie leisteten. Seit den sechziger Jahren ist Eichtheorie, zumindest die der klassischen Feldtheorien, ein gemeinsames Arbeitsgebiet von Mathematikern und Physikern. Algebra sickerte vor allem durch die Anwendung der Darstellungstheorie von Lie-Gruppen und Lie-Algebren in die Physik ein. Symmetrien in der Quan tenfeldtheorie haben die Untersuchung gewisser Klassen von unendlichdimen sionalen Lie-Algebren motiviert.

Klappentext

Klassisch sind die mathematischen Methoden in der Physik analytischer Na­ tur. Dies entspricht der engen Verzahnung von Mathematik und Physik in ihrer Entwicklung bis zum Ende des 19. Jahrhunderts. Die erste und ftir ei­ nige Zeit auch einzige geometrische Theorie der Physik ist Einsteins allgemei­ ne Relativitatstheorie, Es ist bemerkenswert, daB sich die Riemannsche Geo­ metrie als mathematische Grundlage der Einsteinschen Theorie nicht mit der Relativitatstheorie entwickelte. Einstein fand diese Geometrie "fertig" vor und erkannte ihre Relevanz filr seine physikalischen Uberlegungen, Eine weitere Phase engen Zusammenwirkens zwischen Mathematik und Physik ergab sich in der Quantenmechanik. J. von Neumann schuf ein wesentliches Stuck der Funktionalanalysis als den mathematischen Rahmen fur die in den zwanziger Jahren entwickelte Quantenmechanik. Danach begannen in der Physik die Zei­ ten der Storungsrechnung. Eine neue geometrische Phase in der theoretischen Physik begann mit der Entwicklung von Eichtheorien durch Yang und Mills. (Der Name "Eichtheorie" geht auf einen fehlgeschlagenen Versuch Hermann Weyls zuriick, allgemeine Relativitatstheorie und Maxwellsche Elektrodynamik in einer gemeinsamen Theorie zu vereinigen. ) In den Eichtheorien formulierten Physiker so ziemlich dasselbe, was Mathematiker etwa zur gleichen Zeit in der Theorie der Hauptfaserbtindel und ihren Anwendungen in der Differentialgeo­ metrie leisteten. Seit den sechziger Jahren ist Eichtheorie, zumindest die der klassischen Feldtheorien, ein gemeinsames Arbeitsgebiet von Mathematikern und Physikern. Algebra sickerte vor allem durch die Anwendung der Darstellungstheorie von Lie-Gruppen und Lie-Algebren in die Physik ein. Symmetrien in der Quan­ tenfeldtheorie haben die Untersuchung gewisser Klassen von unendlichdimen­ sionalen Lie-Algebren motiviert.



Inhalt

1. Einleitung.- 2. Algebraische Grundlagen.- 3. Geringte Räume.- 4. Supermannigfaltigkeiten.- 5. Analysis auf Supergebieten.- 6. Anwendungen.- 7. Lie-Algebren und Grundbegriffe der Darstellungstheorie.- 8. Höchstgewichtsdarstellungen der Virasoro-Algebra.- 9. Vertexoperatoren.- 10. Beweis der Kac'schen Determinantenformel.- 11. Konstruktion singulärer Vektoren im Fockraum.- 12.Unitäre Höchstgewichtsdarstellungen der Virasoro-Algebra.

Produktinformationen

Titel: Geometrische und algebraische Methoden der Physik: Supermannigfaltigkeiten und Virasoro-Algebren
Autor:
EAN: 9783519020875
ISBN: 978-3-519-02087-5
Format: Kartonierter Einband
Herausgeber: Vieweg+Teubner Verlag
Genre: Analysis
Anzahl Seiten: 372
Gewicht: 424g
Größe: H210mm x B140mm x T20mm
Jahr: 1994
Auflage: 1994