Willkommen, schön sind Sie da!
Logo Ex Libris

Grundzüge der Mehrdimensionalen Differentialgeometrie

  • Kartonierter Einband
  • 212 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags... Weiterlesen
20%
70.00 CHF 56.00
Print on demand - Exemplar wird für Sie besorgt.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Inhalt

I. Die Affinoralgebra der n-dimensionalen Differentialgeometrie.- 1. Die Gruppen und deren Größen.- 2. Die n-dimensionale Mannigfaltigkeit.- 3. Skalare, ko- und kontravariante Vektoren.- 4. Kontra- und kovariante Affinoren.- 5. Symmetrische und alternierende Affinoren.- 6. Die TYberschiebungen.- 7. Der Fundamentaltensor.- 8. Identifizierung von kontra- und kovarianten Größen.- 9. Die idealen Faktoren des Fundamentaltensors. Gleichberechtigte ideale Faktoren.- 10. Lineare Transformationen.- 11. Die Winkel einer Vp und einer Vq in P.- II. Die Affinoranalysis der n-dimensionalen Differentialgeometrie.- 1. Ortsfunktionen.- 2. Die allgemeine lineare Übertragung.- 3. Die geodätische Übertragung.- 4. Die geodätische Linie und das geodätisch mitbewegte Koordinatensystem.- 5. Einige wichtige Differentiationsregeln.- 6. Parallele Vn? 1 1.- 7. Vq-normale und Vq-bildende Felder.- 8. Kongruenzen. Orthogonalnetze.- 9. Mehrfache Differentiation.- 10. Die geometrische Bedeutung von $$ \mathop K\limits^4 $$.- 11. Die Riemannsche Krümmung.- 12. Die Tensoren 2K und 2G.- 13. Die Integrabilitätsbedingungen einer Affinordifferentialgleichung erster Ordnung.- III. Krümmungseigensehaften der Vm in Vn, die sich ohne Verwendung des Riemann-Christoffelsehen Affinors formulieren lassen.- 1.V1 in Vn.- 2. V1 in Vn? 1 in Vn.- 3. Der zweite Fundamentaltensor einer Vn? 1 in Vn.- 4. Hauptkrümmungs- und konjugierte Richtungen einer Vn? 1 in Vn.- 5. Geodätische Linien in Vn? 1 in Vn.- 6. Vm in Vn absolute, relative und erzwungene Krümmung einer Kongruenz.- 7. Die Hauptrichtungen einer Vm in Vn.- 8. Der Hauptsatz des Krümmungsaffinors (Bedingung für eine geodätische Mannigfaltigkeit).- 9. Der Hauptsatz des mittleren Krümmungsvektors. (Bedingung für eine malmannigfaltigkeit).- 10. Die Beziehungen zwischen der Klasse einer Vn und dem Freiheitsgrad des mitbewegten Bezugssystems.- 11. Das Krümmungsgebiet und das Krümmungsgebilde einer Vm in Vn.- 12. Der Umbilikalvektor. Besondere Punkte und Richtungen.- 13. Die höheren Krümmungen einer V1 in Vm in Vn.- 14. DieKriimmungsgebiete undHaupttangentenkurven höhererOrdnung einerVm in Vn.- 15. Vm in Vn in Vm in Vn.- 16. Vm in Vn mit lauter axialen Punkten. Übertragung der Eigenschaften der V n? 1 auf Vm.- 17. Erweiterung des Meusnierschen Satzes für Vp? 1 in Vn? 1 in Vn.- 18. V2 in Vn.- 19. V3 in Vn.- IV. Krümmungseigensehaften der Vm in Vn die sieh auf Christoffelsehe Affinoren beziehen.- 1. Vm in Vn Beziehungen der Riemann-Christoffelschen Affinoren.- 2. Absolute, relative und erzwungene Krümmung einer Vm in Vn.- 3. Die Beziehungen der relativen Krümmung zu den Hauptkrümmungsradien und die einfachsten Biegungsinvarianten.- 4. Andere Biegungsinvarianten einer Vm in Vn.- 5. Bedingungen für eine Vm in Vn.- 6. Die Gleichung ?$$ {i_n} = \mathop p\limits^2 $$.- 7. Vn in Vn+ 1 mit einem zweiten Fundamentaltensor m- ten Ranges, m?n.- 8. Die Vn in Vn+ 1 mit lauter Nabelpunkten.- 9. Die developpablen Vn in Sn+ 1 und die Vn in Sn+ 1 die Biegung zulassen.- 10. n-fache Orthogonalsysteme.- 11. Bedingungen für ein Vm-Element zweiter Ordnung in einer Rn.- 12. Die Identität von Bianchi.- 13. Die konformeuklidischen Mannigfaltigkeiten.- 14. Einige Sätze über Hauptkongruenzen einer Vn.- 15. Die Killingsche Gleichung.- 16. Integration der Killingschen Gleichung.- 17. Allgemeine Folgerungen aus den Integrabilitätsbedingungen.- 18. Der Fall der V2.- 19. Der Fall der V3.- 20. Die Mannigfaltigkeiten mit unbestimmten Hauptrichtungen.- 21. Weitere Untersuchungen über spezielle Vn.- Vergleichendes Verzeichnis der von einigen Autoren verwendetenSymbolik.- Vergleichendes Namensverzeichnis.- Übersicht der verschiedenen Indizes.- Sonstige Bemerkungen.- Namen- und Sachverzeichnis.

Produktinformationen

Titel: Grundzüge der Mehrdimensionalen Differentialgeometrie
Untertitel: In Direkter Darstellung
Autor:
EAN: 9783642503719
ISBN: 978-3-642-50371-9
Format: Kartonierter Einband
Herausgeber: Springer Berlin Heidelberg
Genre: Geometrie
Anzahl Seiten: 212
Gewicht: 315g
Größe: H229mm x B152mm x T11mm
Jahr: 1922
Auflage: Softcover reprint of the original 1st ed. 1922