Willkommen, schön sind Sie da!
Logo Ex Libris

Eigenwerte von Rotationsmatrizen
Arne Breitsprecher

Studienarbeit aus dem Jahr 2016 im Fachbereich Mathematik - Analysis, Note: 2,3, Universität Bremen (Fachbereich 3), Veranstaltung... Weiterlesen
Geheftet (Geh), 20 Seiten  Weitere Informationen
20%
20.50 CHF 16.40
Auslieferung erfolgt in der Regel innert 4 bis 6 Werktagen.

Beschreibung

Studienarbeit aus dem Jahr 2016 im Fachbereich Mathematik - Analysis, Note: 2,3, Universität Bremen (Fachbereich 3), Veranstaltung: Mathematische Grundlagen 2, Sprache: Deutsch, Abstract: Dass Mathematik in ihrer Bedeutung mehr als reine Zahlen ist, erkannte bereits der Philosoph und Mathematiker Galilei. Die technischen Entwicklungen der heutigen Zeit stecken voller naturwissenschaftlicher Entdeckungen, Herausforderungen und Problemen. Eines dieser Probleme ist das Eigenwertproblem. So ist die Google Suche abstrahiert eine periodische gigantische Eigenwertaufgabe (PBMW09). Es wird also eine lineare Abbildung gesucht, die sich bei ihrer Transformation nicht verändert oder auf ein Skalar selbst abgebildet wird. Der Skalar wird dann als Eigenwert, der Vektor x als Eigenvektor der Matrix A bezeichnet. Bei diesen Eigenwerten und Vektoren handelt es sich um reelle Eigenwerte von A bzw. reelle Eigenvektoren, weil wir uns im reellen Zahlenbereich bewegen. Es gilt, dass ein Eigenvektor ungleich dem Nullvektor ist, da ansonsten alle R die Gleichung A0 = 0 erfüllen und damit alle lineare Abbildungen immer in sich selbst überführt würden. Bei Betrachtung im komplexen Zahlenbereich werden die Eigenwerte/-vektoren als komplexe Eigenwerte/-vektoren bezeichnet. Im Folgenden wollen wir uns aber auf die reellen Eigenvektoren beschränken. Als Schlussfolgerung bedeutet dies, dass es keine re-ellen Eigenwerte gibt, außer ist ein Vielfaches von . In diesem Fall entspricht die Rotation einer halben Drehung oder der Identität (ganze Drehung um 360 ).

Produktinformationen

Titel: Eigenwerte von Rotationsmatrizen
Autor: Arne Breitsprecher
EAN: 9783668258174
ISBN: 978-3-668-25817-4
Format: Geheftet (Geh)
Herausgeber: GRIN Publishing
Genre: Analysis
Anzahl Seiten: 20
Gewicht: 46g
Größe: H208mm x B9mm x T13mm
Jahr: 2016
Auflage: 1. Auflage.

Filialverfügbarkeit

PLZ, Ort, Name Es wurde kein Treffer gefunden. Bitte geben Sie eine gültige PLZ oder einen gültigen Ort ein. Bitte geben Sie eine PLZ oder einen Ort ein. Dieses Produkt ist in NUMBER Filialen verfügbar Dieses Produkt ist momentan nur im Online-Shop verfügbar. NUMBER Stk. verfügbar Kein aktueller Lagerbestand verfügbar. Detailkarte Detailkarte in einem neuen Fenster anzeigen Route berechnen Route in einem neuen Fenster berechnen Adresse Telefon Öffnungszeiten NUMBER Stk. verfügbar Nicht an Lager Die nächste Filiale finden Es gibt keine Geschäfte in 20 Kilometer Reichweite
  • Geben Sie die Postleitzahl, den Ortsnamen oder den Namen einer Filiale in das Suchfeld ein
  • Klicken Sie auf den "Pfeil"-Button, rechts neben dem Eingabefeld
  • Wählen Sie eine Filiale in der Trefferliste aus

Die nächste Filiale auch mobil finden Montag Dienstag Mittwoch Donnerstag Freitag Samstag Sonntag
Die nächste Filiale finden
  • Geben Sie die Postleitzahl, den Ortsnamen oder den Namen einer Filiale in das Suchfeld ein
  • Klicken Sie auf den "Pfeil"-Button, rechts neben dem Eingabefeld
  • Wählen Sie eine Filiale in der Trefferliste aus

Die nächste Filiale auch mobil finden
Zuletzt angesehen
Verlauf löschen