Bienvenue chez nous !
Logo Ex Libris
 Laissez-vous inspirer ! 

Energy Scalable Radio Design

  • Livre Relié
  • 243 Nombre de pages
(0) Donner la première évaluation
Évaluations
(0)
(0)
(0)
(0)
(0)
Afficher toutes les évaluations
Smart energy management is indispensable in modern radios. This book describes and applies an energy-driven design strategy to the... Lire la suite
CHF 227.00
Impression sur demande - l'exemplaire sera recherché pour vous.
Pas de droit de retour !
Commande avec livraison dans une succursale

Description

Smart energy management is indispensable in modern radios. This book describes and applies an energy-driven design strategy to the design of an energy-efficient, highly scalable, pulsed UWB receiver, suitable for low data rate communication and sub-cm ranging.

Smart energy management, both at design time and at run time, is indispensable in modern radios. It requires a careful trade-off between the system's performance, and its power consumption. Moreover, the design has to be dynamically reconfigurable to optimally balance these parameters at run time, depending on the current operating conditions.

Energy Scalable Radio Design describes and applies an energy-driven design strategy to the design of an energy-efficient, highly scalable, pulsed UWB receiver, suitable for low data rate communication and sub-cm ranging. This book meticulously covers the different design steps and the adopted optimizations: System level air interface selection, architectural/algorithmic design space exploration, algorithmic refinement (acquisition, synchronization and ranging algorithms) and circuit level (RTL) implementation based on the FLEXmodule-concept. Measurement results demonstrate the effectiveness and necessity of the energy-driven design strategy.


Contenu
Preface. 1 Introduction and motivation. 1.1 Dreaming of a smart environment. 1.2 Limited energy resources and the energy gap. 1.3 Strategies to bridge the energy gap. 1.4 Book scope and organizational overview. 2 Adaptation of classical design flow for energy-driven system-to-circuit design. 2.1 Introduction. 2.2 Classical (digital) top-down design flow: Gajski-Kuhn. 2.3 Need for energy-driven cross-layer scalable system-to-circuit design. 2.4 Proposed adaptations of the classical design flow. 2.5 Conclusion. 3 System level specifications and design. 3.1 Introduction. 3.2 System specifications. 3.3 Selection of the air interface. 3.4 Conclusion. 4 Algorithmic/architectural design space exploration. 4.1 Introduction. 4.2 UWB communication and receiver framework. 4.3 Receiver alternatives. 4.4 Receiver comparison: power, performance, EPUB. 4.5 Algorithmic/architectural DSE summary. 4.6 Further considerations. 4.7 Conclusion. 5 Algorithmic/architectural level refinement. 5.1 Introduction. 5.2 Algorithm refinement. 5.3 Architecture refinement. 5.4 Conclusion. 6 Digital RT level design: flexibility to save energy. 6.1 Introduction. 6.2 Design based on nested FLEXmodules. 6.3 Measuring and weighing flexibility. 6.4 Energy-optimal design through flexibility. 6.5 Intermediate conclusion on the flexibility-power-performance trade-off. 6.6 Detailed back-end architecture and design. 6.7 Conclusion. 7 Chip and system measurements. 7.1 Introduction. 7.2 Back-end measurements. 7.3 System measurements: 3-5 GHz band. 7.4 System measurements: 0-960 MHz band. 7.5 Receiver comparison. 7.6 Conclusion. 8 Conclusions. Bibliography. Index.

Informations sur le produit

Titre: Energy Scalable Radio Design
Sous-titre: for Pulsed UWB Communication and Ranging
Auteur:
Code EAN: 9789048126934
ISBN: 978-90-481-2693-4
Format: Livre Relié
Genre: Technique chaleur et énergie
nombre de pages: 243
Poids: 550g
Taille: H24mm x B242mm x T158mm
Année: 2009

Autres articles de cette série  "Analog Circuits and Signal Processing"