Bienvenue chez nous !
Logo Ex Libris
 Laissez-vous inspirer ! 

Hyperspectral Image Analysis

  • Livre Relié
  • 472 Nombre de pages
(0) Donner la première évaluation
Évaluations
(0)
(0)
(0)
(0)
(0)
Afficher toutes les évaluations
This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectra... Lire la suite
CHF 165.00
Impression sur demande - Habituellement expédié sous 4 à 6 semaines.
Commande avec livraison dans une succursale

Description

This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.




Provides a comprehensive review of the state of the art in hyperspectral image analysis

Presents perspectives from experts who are pioneers in a broad range of signal processing and machine learning fields related to hyperspectral imaging and remote sensing

Is suitable both as a reference book and as a textbook for advanced graduate courses on multi-dimensional image processing



Auteur

Dr. Saurabh Prasad is an Associate Professor at the Department of Electrical and Computer Engineering at the University of Houston, TX, USA.

Dr. Jocelyn Chanussot is a Professor in the Signal and Images Department at Grenoble Institute of Technology, France.



Contenu
1. Introduction.- 2. Machine Learning Methods for Spatial and Temporal Parameter Estimation.- 3. Deep Learning for Hyperspectral Image Analysis, Part I: Theory and Algorithms.- 4. Deep Learning for Hyperspectral Image Analysis, Part II: Applications to Remote Sensing and Biomedicine.- 5. Advances in Deep Learning for Hyperspectral Image Analysis - Addressing Challenges Arising in Practical Imaging Scenarios.- 6. Addressing the Inevitable Imprecision: Multiple Instance Learning for Hyperspectral Image Analysis.- 7. Supervised, Semi Supervised and Unsupervised Learning for Hyperspectral Regression.- 8. Sparsitybased Methods for Classification.- 9. Multiple Kernel Learning for Hyperspectral Image Classification.- 10. Low Dimensional Manifold Model in Hyperspectral Image Reconstruction.- 11. Deep Sprase Band Selection for Hyperspectral Face Recognition.- 12. Detection of Large-Scale and Anomalous Changes.- 13. Recent Advances in Hyperspectral Unmixing Using Sparse Techniques and Deep Learning.- 14. Chapter Hyperspectral-Multispectral Image Fusion Enhancement Based on Deep Learning.- 15. Automatic Target Detection for Sparse Hyperspectral Images.

Informations sur le produit

Titre: Hyperspectral Image Analysis
Éditeur:
Code EAN: 9783030386160
ISBN: 3030386163
Format: Livre Relié
Editeur: Springer International Publishing
Genre: Logiciels utilisateurs
nombre de pages: 472
Poids: 869g
Taille: H241mm x B160mm x T31mm
Année: 2020
Auflage: 1st ed. 2020

Autres articles de cette série  "Advances in Computer Vision and Pattern Recognition"